
A STUDY ON THE HI CONCENTRATION BY POLYMER ELECTROLYTE
MEMBRANE ELECTRODIALYSIS

Chang-Hee Kim, Byung Kyun Kim, Kyoung-Soo Kang, Chu-Sik Park, Sang-Ho Lee,
Seong-Dae Hong, Gab-Jin Hwang and Ki-Kwang Bae

Hydrogen Production Research Center
Korea Institute of Energy Research

71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea

Abstract

Concentration of HI over HIx solution by polymer electrolyte membrane electrodialysis was
investigated using galvanodynamic and galvanostatic polarisation method. For this purpose, HIx
solution with sub-azeotrope composition (HI : I2 : H2O = 1.0 : 0.5 : 5.8) was prepared. It was noticed
that the electrical energy demand for electrodialysis of HIx solution decreases with increasing
temperature. From the experimental results, it is concluded that the system resistance crucially affects
the electrodialysis cell overpotential and hence the optimisation of cell assembly as well as the
selection of low resistance materials should be carried out in order to obtain high performance
electrodialysis cell.
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Introduction

Thermochemical water-splitting iodine sulphur (IS) process is considered as the most promising
method for large scale, high efficiency, and environmentally benign hydrogen production [1]. The IS
process is comprised of three coupled chemical reactions such as Bunsen reaction, sulphuric acid
decomposition reaction, and HI decomposition reaction [2]. The reaction scheme is described as
follows:

I2 + SO2 + 2H2O � 2HI + H2SO4 (1)
H2SO4 � H2O + SO2 +1/2 O2 (2)
2HI � H2 + I2 (3)

Many works have been done on the evaluation of the thermal efficiency of the IS process by
optimizing their closed-cycle loop [1, 3-5]. They reported that the hydriodic acid concentration part is
the most energy consuming process since the HIx solution (HI - I2 - H2O mixture) produced from the
Bunsen reaction present in an azeotrope composition. And hence the distillation part to concentrate
hydriodic acid needs lots of excess thermal energy, giving rise to total thermal efficiency drop in IS
process. 

To solve these problems, GA researchers [2] adopted an extractive distillation by using phosphoric
acid. In this process, the phosphoric acid extracts only I2 and H2O and finally HI can be concentrated.
However, it contains phosphoric acid concentration process by steam recompression, making the whole
process to be complicated and corrosive. In 2003, Hwang et al. [6], tried to concentrate HI in HIx
solution by electro-electrodialysis method. They reported that the energy demand of electro-
electrodialysis to produce 1mole of hydrogen was much lower than that of steam recompression in GA
process and the application of electro-electrodialysis in IS process seems to be very useful with
proposing the possibility of high thermal efficiency.

In this respect, the present work discusses the polymer electrolyte membrane electrodialysis
method to concentrate the HI over HIx solution. For this purpose, we prepared HIx solution with sub-
azeotrope composition (HI : I2 : H2O = 1.0 : 0.5 : 5.8) and the polymer electrolyte membrane
electrodialysis was investigated using galvanodynamic and galvanostatic polarisation method.

Experimental

The activated carbon fiber cloth was cut into the size of 5 cm x 5 cm to form the carbon electrode.
The carbon electrode was immersed in ethanol solution overnight to remove the residuals and then
dried at room temperature.

The Nafion 117 (Du Pont, USA) was used as a polymer electrolyte membrane. The membrane was
pretreated by boiling in 3 wt.% H2O2 solution for 1 h, followed by boiling in 0.5 M H2SO4 for 1h.
Thereafter, the membrane was placed in boiling water for 1 h, and the procedure was repeated at least
twice to remove completely the sulfuric acid.

The HIx solution was prepared from the mixing of hydriodic acid (55~58 wt.%, Kanto Chemicals
Co., Japan) and Iodine (99%, Junsei Chemicals Co., Japan) with mole ratio of HI : I2 = 1.0 : 0.5. From
the titration result of HIx solution, it was confirmed that the mole ratio of as-prepared HIx solution was
HI : I2 : H2O = 1.0 : 0.5 : 5.8. This indicated that the HI molarity of starting solution was 9.55 mol 
kg-1-H2O, which is lower than the azeotrope composition of 11.11 mol kg-1-H2O.
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A single cell assembly was composed of polymer electrolyte membrane sandwiched with two
carbon electrodes, gaskets, and carbon blocks with flow channels for the distribution of reactant HIx
solution as shown in Figure 1 (a). The single cell was place in a mantle heater to maintain a desired
temperature. Figure 1 (b) shows the schematic illustration of the experimental arrangements for
electrochemical measurements. The volumes of HIx solution (HI : I2 : H2O = 1.0 : 0.5 : 5.8) were 430
and 190 ml in anolyte and catholyte reservoirs, respectively. The reservoirs and all glass lines were cast
in double jacket that were heated with silicon oil at the same temperature. 

Results and discussion 

Figure 2. displays cell potential measured from the electrodialysis cell as a function of operation
temperature. As operation temperature increased from 35 to 90°C, the cell potential decreased from
0.68 to 0.41 V at the applied current of 2 A. This is because high temperatures reduce the amount of
electrical energy required to concentrate HI molarity from a thermodynamic standpoint and hence
electrical energy demand ∆G for electrodialysis of HIx solution decreases with increasing temperature
[7]. Furthermore, high temperature operation quite generally favours reaction kinetics decreasing
activation overpotential. 

In this respect, it is assured that high temperature operation is advantageous for electrodialysis of
HIx solution. In this work, the operation cell temperature was selected as 90°C. If not specifically
indicated, all the electrochemical measurements in the present study were carried out at 90°C.

Figure 3 illustrates the current-potential curves measured on the electrodialysis cell. The potential
exhibited linear increase with the applied current over all current ranges. It is well known [8] that
current-potential curve has a characteristic shape and clearly shows three distinct regions with respect
to the applied current. In the low current range, the shape of current-potential curve is convex and
transformed to linear in the intermediate current range. Then the shape changed to concave in the high
current range. 

The overpotential in the low current range is ascribed to the activation overpotential, which is
caused by the slowness of the reactions taking place on the surface of the electrode. In the intermediate
current range, the overpotential is mainly due to the ohmic losses of the system. The appearance of
overpotential in the high current range is primarily ascribed to the mass transfer limitation of the
involved species. 

Under the circumstances, it is reasonable to say that the reaction kinetics on the surface of carbon
electrode is facilitated and hence the activation overpotential is not observed. However, the system
resistance such as electrode, electrolyte, polymer electrolyte membrane, and carbon block could be
dominant, influencing cell overpotential over all current ranges. Therefore, it is necessary to reduce the
system resistance by selecting the cell constituents with low resistance and optimising the cell
assembly.

It is noticed that the vapour pressure of HI over HIx solution steeply increases right after the
azeotrope compositon [9]. Accordingly, the thermal burden imposed on the distillation could be
drastically diminished. The azeotrope composition of HIx solution is HI : H2O = 1.0 : 5.0 (HI molarity:
11.11 mol kg-1-H2O). However, as mentioned earlier, the HIx solution prepared in this work was of sub-
azeotrope composition with HI molarity 9.55 mol kg-1-H2O. Therefore, we tried to concentrate HI over
azeotrope compositon from sub-azeotrope composition examining electrochemical behaviour of the
cell.
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Figure 4 (a) plots the cell potential against elapsed time with applied current of 2 A. The cell
potential steadily increased from 0.40 to 0.47 for 2 h. At the same time, the HI molarity increased up
to 11.9 mol kg-1-H2O in catholyte, while that in anolyte decreased up to 8.7 mol kg-1-H2O. The ratio of
HI molarity change between catholyte and anolyte from the starting composition is about 2.6. Taking
into account that the volume of HIx solution in anolyte is almost 2.3 times as much as that in catholyte,
it can be said that the amount of HI molarity change in two solutions is roughly the same. 

From the experimental results, we concluded that electrical energy demand ∆G for electrodialysis
of HIx solution decreases with increasing temperature. Moreover, the electrodialysis cell overpotential
is primarily influenced by the system resistance and hence the thermal efficiency of the cell could be
improved by reducing the constituent resistance and by optimizing the cell assembly. 
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Figure 1. Schematic diagram of (a) electrodialysis cell and (b) experimental arrangements
used for concentrating HI over HIx solution

Figure 2. Plots of cell potential against operation temperature measured on the electrodialysis

cell at the applied current of 2A. The apparent area of activated carbon electrode was 25 cm2.
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Figure 3. Galvanodynamic polarization curves measured on the electrodialysis cell
at the operation temperature of 90°C.

Figure 4. Plots of (a) cell potential and (b) HI molarity against elapsed time measured on the
electrodialysis cell at the operation temperature of 90°C. The applied current on the cell

remained constant with 2 A throughout the measurement.
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