
ANNEX A. SPECIFICATION OF BIOFUEL MARKETS IN THE AGLINK MODEL– 117 
 
 

BIOFUEL SUPPORT POLICIES: AN ECONOMIC ASSESSMENT – ISBN 978-92-64-04922-2 © OECD 2008 

Annex A.  
 

Specification of Biofuel Markets in the Aglink Model 

General description of the Aglink Biofuel Modules 

Explicit biofuel modules have been developed for four Aglink regions which 
currently represent some 94% of global fuel ethanol production and 81% of world 
biodiesel production. These regions include the USA, Canada, the European Union and 
Brazil. The general module represents the production of biofuels, the production and use 
of by-products, and the biofuel use for transport. Furthermore, it considers foreign net 
trade which is balanced by world equilibrium prices on the global level. Separate 
markets are represented for the two major types of biofuels: ethanol, and biodiesel.  

Within both types, the supply side of the model structure distinguishes between first-
generation biofuels from agricultural commodities (cereals and sugar crops in the case 
of ethanol, vegetable oils in the case of biodiesel), second-generation biofuels from 
dedicated biomass production (i.e. cellulose based ethanol from crops such as fast-
growing wood or grasses, and synthetic biodiesel from biomass crops), second-
generation biofuels from crop residues (in particular from straw), and other biofuels 
(including fuels derived from, e.g., algae, municipal waste, used frying oil etc.). Among 
these types, first-generation biofuels from agricultural commodities are modelled fully 
endogenously in the model, while the production of second-generation and other 
biofuels enter as exogenous variables. Implications of second-generation biofuels on 
agricultural markets, however, are reflected through endogenous links to crop area, crop 
revenues and the feed-livestock links. 

Production of biofuels is generally represented by the production capacity and the 
capacity use rate. Production capacity growth is modelled as a function of the net 
revenues from biofuel production, i.e. the difference between the output value (biofuel 
price and any subsidies directly linked to biofuel production) and the production costs 
per unit of biofuels (net of the value of by-products). Capacity growth generally 
responds to these net revenues with several time lags, given the time required to plan 
and construct new facilities. The capacity use rate, in contrast, depends on net revenues 
not considering capital fixed costs, and responds to market signals without lags. 
Generally, biofuel production is modelled separately for individual feedstocks and added 
up for the total production of each type where several feedstocks are used for a type of 
biofuels in a given country. 
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Second-generation biofuel production from dedicated biomass production partly 
competes with the production of commodities for other usages. In consequence, the area 
required is estimated from the production quantity, and a share of this area is deduced 
from the land used for agricultural market commodities. In contrast, second-generation 
biofuel production from crop residues complements the production of agricultural 
commodities. The added value therefore is taken into consideration in the calculation of 
the crop revenues and hence in the crop allocation system. 

By-products from biofuel production form an integral element in the production 
costs. At the same time, however, some of these by-products go back into the 
agricultural production process. In particular, distillers grains, a by-product from grain 
based ethanol production, deserves special attention. As the market for distillers grains 
are not represented in Aglink (and a full market representation for distillers grains is not 
intended), a market price for distillers grains is derived from the prices for oilmeals and 
coarse grains, the two main feed products distillers grains can replace in the feed ratios. 
For the two main livestock types – ruminant and non-ruminant livestock – the feed cost 
index then is modified to take into account the different use of distillers’ grains in the 
ratios for these animals. Finally, the feed use of coarse grains and of oilmeals is adjusted 
for the use of distillers’ grains. 

The demand for ethanol generally is split up into three components: an additive 
component where ethanol replaces other (chemical) additives in the blend with gasoline; 
a low-level blend (or fuel extender) component where the lower energy content in 
ethanol compared to gasoline is offset by superior other qualities (such as the higher 
oxygen content and octane number); and ethanol as a neat fuel consumed by specifically 
modified vehicles, so-called flex-fuel vehicles. These three demand components are 
explicitly taken into account in estimating the ethanol demand, all considering the price 
ratio between ethanol and fossil gasoline as the driving variable. Biodiesel use, in 
contrast, is modelled as a simple equation depending on the price ratio between 
biodiesel and fossil diesel. Where biofuel mandates exist and data are available, these 
are modeled as minimum biofuel shares, and the link between biofuel demand and the 
price ratio is cut unless demand exceeds the specified minimum. 1 

Finally, markets are cleared by a net trade position residual from domestic supply 
and demand, with the domestic prices for biofuels depending on their respective world 
prices taking into account import tariffs in the net import situation. World prices for 
ethanol and biodiesel clear the markets on the global level. 

The following sections describe the modelling approach in greater detail. 
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Biofuel production 

First-generation biofuels from agricultural commodities 
Net Cost estimates (NC) for alternative biofuels as modelled in the 2006 report, but 

separate for different technologies / feedstocks, based on actual prices without support 
linked to biofuels. Where relevant, revenues for by-products should explicitly account 
for Distillers Dried Grains (DDG): 
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with 
i commodity index for feedstocks  
j product index for biofuels  
r region index 
t time index 
NC net costs of biofuel production (average, LC/hl) 
PP,WP domestic prices (producer, wholesale, LC/hl) 
XPOIL world crude oil price (USD/barrel) 
XR exchange rate (LC/USD) 
DDG distillers dried grains 
EF energy-rich feed  
PF protein-rich feed  
CG coarse grains  
OM oilseed meals  
OBP other by-products  
α,β,δ coefficients 
γ0 capital cost element in production costs  
γ1 other exogenous elements in production costs (operation and maintenance costs) 
 
In addition, Variable Net Costs (VNC) exclude fixed costs, i.e. capital costs which are not 
relevant for production decision based on existing capacities: 
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with 
VNC variable net costs (average, LC/hl) 
 

Growth in Production Capacities (QPC) should depend on returns over investments 
expected for biofuel production facilities, which would be modelled as returns 
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(including support directly related to production quantities) net of net production costs, 
relative to capital costs. Given that it takes about 18 months to set up a biofuel plant, and 
that expected returns largely depend on past returns, the lag structure needs to take into 
account t-1 till t-4. As it is possible to speed up the building process to some degree, the 
current period also enters but the coefficient would be small. The size of the parameters 
for different lags are, therefore, likely to be ordered as follows: t-2 > t-1 > t-3 > t-4 > t. 
We assume that biofuel producers are aware of policy changes and take them into 
account immediately. Market developments are seen as volatile, however, and hence 
more than just the available year’s data are taken into account in investment decisions. 

The US could provide sufficient data to back a general capacity building function, 
but US data need to be scaled by appropriate measures to make them comparable to 
other countries2. A proxy for total industry investment, corrected for foreign direct 
investment, needs to be identified.  
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with 
QPC biofuel production capacity  
DP direct support for biofuel output  
INV available investment capital in country r (including foreign direct investment)
  
GDPD GDP deflator 

 
Capacity Use Rates (QPR) will depend on variable net costs rather than total net 

costs as explanatory variable: 
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with 
QPR biofuel production capacity use rate  
QPRL, QPRU lower and upper bounds for the use rate  
LOGA, LOGB parameters in logistic function 

 
Total production of biofuels will be discussed after the modelling of second-generation fuels. 
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Second-generation biofuels 

Second-generation biofuels can be categorised in three groups, depending on their 
links to agricultural production. Ethanol and Fischer-Tropsch fuels can be produced 
either from dedicated crops produced in agricultural production systems (e.g. from 
grasses such as miscanthus or switchgrass or from fast-growing trees such as willow, 
poplar or eucalyptus), from agricultural residues (e.g. straw, stover etc.), or from 
biomass not produced in agricultural systems (e.g. from forestry, household waste, algae 
etc.). Consistent with their different relationships to agricultural production systems, 
these three groups of biofuels need to be modelled differently in the agricultural market 
model Aglink-Cosimo. Given that data on second-generation biofuels (production, 
feedstocks, costs etc.) are even more difficult to find than on first-generation fuels, the 
representation of any kind of second-generation biofuels will need to be more ad hoc 
and of a less sophisticated nature.3 

Second-generation biofuels from dedicated crops 
Dedicated crops that provide cellulose for ethanol, or biomass for Fischer-Tropsch 

synthesis fuels, are often, but not always, produced on land that alternatively could be 
used for food or feed production, and hence have the potential to negatively impact the 
supply of those products. Given the uncertainties related to second-generation biofuel 
technologies and economic, the less than perfect data situation, and the wide range of 
production and conversion technologies, we propose a relatively simple model 
representation where ethanol and Fischer-Tropsch-Diesel are produced directly on the 
agricultural land, i.e. the feedstock production, transport, and conversion to biofuels are 
combined in a single, synthetic production process. While this simplification obviously 
ignores the large variability of production and conversion systems, and assumes that the 
biomass produced in one country is also converted in that same country, it allows for a 
relatively generic specification in the model that, in addition, could also include other 
forms of bioenergy sourced from agricultural biomass and/or production of first-
generation biofuels from feedstocks not covered by the model (e.g. jatropha) in a similar 
manner. Depending on the country in question, parameters would differ and thus allow 
for a differentiation according to the relative advantages of individual production 
systems in alternative regions. 

Net production costs consist of biomass costs, transport costs and conversion costs, 
and thus can be represented as follows: 
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With: 
NC net production costs (average, LC/hl)  
α conversion rate, t of biomass per hl of biofuel  
PC biomass production costs (LC/t)  
TC biomass transport costs (LC/t)  
CC conversion costs (LC/hl)  
MC capital and management costs of biomass production (LC/t)  
LC labour costs of biomass production (LC/t)  
LR land rent (LC/ha)  
YLD biomass yield (t/ha)  
TCspec specific costs of pelletising (LC/t)  
TClc loading/unloading costs (LC/t)  
dist distance, km  
TCec energy costs of transportation (LC/km/t)  
TCmc management costs of transportation  (LC/km/t)  
γ0 capital cost element in production costs  
γ1 other exogenous elements in production costs (operation and maintenance costs)
  
δOBP value of by-products not specified 
i biomass type (BME: biomass for cellulosic ethanol; BMD: biomass for FT-
Diesel) 

above, land rents are obviously crucial for the interaction between second-generation 
biofuel production and agricultural markets. In future it will therefore be important to 
endogenise this cost element. 

The total area required for the biomass production related to exogenously assumed 
biofuel quantities4 is calculated from exogenously assumed yields – in the case of 
multiple biofuels produced from a given type of biomass these are summed up: 
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As biomass for biofuel production often is produced on land not suitable for food 
production, the food area required is calculated from an exogenous share which depends 
on the type of biomass produced. This factor also depends on policy decisions, such as 
the permission to use set-aside land: 
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The area used for individual food crops is then reduced proportionally to the 
alternative use for biomass production5: 
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With 
c crop index [WT, CG, OS] 
The elasticities with respect to the effective biomass area reflect the different displacement of 
different crops by biomass for energy. They need to be calibrated such that, in the base period: 
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Second-generation biofuels from agricultural residues 

Agricultural residues such as straw or stover can be used for the production of 
ethanol via gasification, or of other biofuels via the Fischer-Tropsch synthesis. Its 
modelling has to be different to that of biofuels from dedicated biomass production as, 
in general, no or little additional costs occur with the production of that biomass (there 
may be additional costs associated with harvesting). In contrast, transport costs may be 
higher than in the case of dedicated biomass production given the lower yield per 
hectare and hence the larger distances on average between the production area and the 
processing plant. 

However, a minimum price for the agricultural residues can be defined by the 
opportunity costs of the biomass, such as its fertiliser value, possibly adjusted by the 
difference between the costs for harvesting the biomass and those for applying the 
fertiliser. Opportunity costs may higher if other uses prevail, such as animal bedding, 
which in a large scale is more common in developing countries than in developed 
countries today. Finally, the opportunity costs would increase significantly as the 
removal of organic matter would threaten the fertility of the soil, which in general can 
be assumed not to be relevant as long as at least two thirds of the residues remain on the 
farm.6 ,7. 

An additional difference to biofuels from dedicated biomass production is that, as a 
co-product, the revenues for agricultural residues will increase incentives for the 
production of the main product. 

In consequence, costs of biofuel production are calculated on the basis of the 
fertiliser value of the crop residues – this value should increase once the threshold value 
of one third of the residues is used for biofuels: 
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Where: 
RES crop residues  
FV fertiliser value per tonne of crop residues 
SV soil quality value of crop residues 
SF soil quality factor 
BFRES use of crop residues for biofuels  
QPWT, QPCGproduction quantity of wheat, coarse grains 

 
The soil quality factor will need to be set to a rather large number to prevent the 

residue use from becoming significantly greater than a third of residue production. 

As farmers will engage in harvesting the additional biomass only if the additional 
revenues exceed the fertiliser value, it is assumed that the profit margin, per tonne of 
biomass, is split equally between the agricultural producer and the processing plant. In 
consequence, 50% of the margin add value to the cereal production on farm8, with its 
total effect again depending on the exogenously assumed production of the biofuels: 
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With: 
RV residue value per tonne of biomass  
BFRES,j use of crop residues for biofuel type j 

 

Both residue value and the residue quantity used for biofuel production can be 
aggregated across biofuel types: 
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Assuming that the share of residues used for biofuel production is the same across 
cereal types, net returns of crop production can be expressed as 
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Biofuels from non-agricultural sources 
Biofuels from non-agricultural sources include biodiesel from used cooking oils, 

synthesis fuels (BTL) from municipal wastes or algae, ethanol from forest residues and 
wood chips, and a number of other forms of organic matter which have no or very little 
link to agricultural production. While their production processes do not affect 
agriculture directly, this additional supply impacts on biofuel markets and can hence 
have indirect effects on biofuel prices and agricultural biomass use. Biofuels from non-
agricultural sources are therefore included exogenously in the model for completeness 
reasons. 
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Total biofuel production 
Total production of any type of biofuel (ethanol and biodiesel) will be the simple 

sum of the individual quantities by feedstock, with first-generation fuels depending on 
the Capacity Use Rate and the Capacity itself. As the Capacity is for the end year point 
in time, the average of t and t-1 should be taken into account: 
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By-products 
A number of by-products are relevant in the context of biofuel markets. While 

oilseed meals are directly linked to the oilseed crush (with the vegetable oil being used 
partly for the production of biodiesel) and have been covered by the model before, 
distillers’ grains, either in liquid or in dried form (DDG) deserve particular attention. 
DDG is co-produced with cereal-based ethanol in the dry milling process and 
increasingly important for animal feed markets in North America and Europe. 

Price of DDG 
Based on US data, the link between the price of DDG and the prices of maize and 

soyabean meal is not that strong: using wholesale prices for DDG and soyabean meal, 
market prices for maize and annual data from 1981 to 2006 shows an R² of only 57%. 
The quantity of maize used for the production of ethanol – as a proxi for the DDG 
quantity produced – proves to be an important explanatory variable: the following 
equation has an R² of 85%: 

( )USA
t

USA
tMA

USA
tSBM

USA
tDDG MABFMPWPWP ln*09.22*545321.0*384775.08869.204 ,,, −++=

(t-stats:  5.52      5.16        4.21   6.12  ) 
with: 
WP wholesale price, USD per metric tonne  
MP market price, USD per metric tonne  
DDG distillers dried grains, Laurenceburg, Indiana, marketing year data (Oct-Sep) 
SBM soyabean meal, 44% protein9, Central Illinois, marketing year data (Oct-Sep) 
MA maize, No. 2 Yellow, Central Illinois, marketing year data (Sep-Aug) 
MABF maize use in biofuel (ethanol) production, 1 000 metric tonnes, marketing year data 
(Sep-Aug) 
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Using the quantity of maize used for the production of ethanol divided by the 
ruminant production, or alternatively the beef production, yields only lower coefficients 
of determination at around 83%10. 

Feed-cost index 
The model already contains share estimates for feed used in the ruminant versus 

non-ruminant sectors. DDG, however, would be shared differently as ruminants can 
digest this feed at higher ratios than non-ruminants. In addition, DDG replaces coarse 
grains and oil meals at different rates across livestock types. These replacement 
quantities would be calculated as follows: 

CGRU
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DDGDDG

CGRU
DDG SHRSHRQPFE ,, **=  

with 
FEDDG

RU,CG quantity of DDG replacing coarse grains in ruminant livestock feed ratio  
SHRDDG

RU share of domestic DDG feed to ruminant livestock  
SHRDDG

RU,CG amount of coarse grains replaced by one tonne of DDG in ruminant feed ratio 

In consequence, a – lower – blended coarse grains price for feed in ruminant 
livestock can be derived from the CG and DDG prices and the respective feed 
quantities: 
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with: 
PSHRU share coefficient denoting the share of ruminant livestock in feed demand;  
= 1-PSHNR 

Similar equations would define blended feed prices for coarse grains in non-
ruminants, and for oil meals in both ruminants and non-ruminants. 

For the purpose of defining livestock-type specific feed-cost indices, blended feed 
quantities would be defined in a straight-forward manner: 
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CG PSHFEFEFEFE *,,, ++=  

 
For wheat, the blended feed use is simply calculated from the livestock type share 

alone, while the blended price remains unchanged: 

RU
WT

RUbld
WT PSHFEFE *, =  

WT
RUbld

WT PPPP =,  
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With that, the two feed cost indices can be constructed in line with the original one: 
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Feed use of coarse grains, oil meals 
Feed use of individual commodities is modelled on a national level rather than for 

individual livestock types. An average blended feed price is there calculated using the 
livestock type shares: 

( ) RUbld
i

NRNRbld
i

NRbld
i PPPSHPPPSHPP ,, *1* −+=  

 
As the blended coarse grains price declines with increased ddg use, the comparative 

profitability of feeding the coarse grain – ddg blend increases relative to other feed 
commodities, notably wheat: 

( ) ( ) ( )( )NRRUiQPOMCGWTiPPfFEFE i
bld

iDDGCG ,,,,ln ===+  
Where 

( )CGNR
DDG

NR
DDG

CGRU
DDG

RU
DDGDDGDDG SHRSHRSHRSHRQPFE ,, *** +=  

Effects of increased ethanol and DDG production on feed use 
In consequence, an increased production of grain-based ethanol has the following 

implications for cereal feed use: 

• With higher demand for cereals, prices increase, and feed use of cereals declines 

• Higher feed costs also reduce livestock production, so again feed use of cereals declines 

• Increased availability of DDG, marketed at a discount compared to feed cereals, reduces 
the price of the CG-DDG blend, which partly offsets the higher feed costs and hence the 
reduction in livestock production. 

• As the blended price of CG-DDG declines, the feed share of the CG-DDG blend increases 
at the cost of other feed commodities, particularly wheat. 
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Biofuel demand 

Price ratios driving biofuel demand 
Generally speaking, demand of biofuels, expressed as a share of total demand for a 

given fuel type (i.e. gasoline and ethanol, or diesel and biodiesel) responds to the market 
price of the biofuel relative to the price of its fossil competitor. All prices are calculated 
at the retail level and denominated in LC/hl of fuel, i.e. no conversion is being made to 
account for the different energy content of the fuels. 

Ethanol 

Given the properties of ethanol relative to gasoline, the use of fuel ethanol can be 
separated in three broad groups: Ethanol as an additive, ethanol in low-level blends, and 
ethanol as a neat fuel. The use of biofuels generally responds to changes in the market 
retail prices rather than wholesale prices – the difference being explained by any 
remaining fuel taxes and the retail margin: 

j
tr

j
tr

j
tr

j
tr MARTAXWPRP ,,,, ++=  

Ethanol as an additive 
If used as an additive, ethanol does not compete with gasoline, but with other 

additives, to the degree these are (legally and economically) available. In the simplest 
form, if no alternative additive is available, the ethanol use is a fixed share of the total 
gasoline use. In other cases, ethanol will replace other additives as its price approaches 
or falls below the price of the substitute. As most additives are crude oil based products, 
this trigger price will be related to that of gasoline. As in the case of low-level blends 
and neat fuels, we use a sine function to mirror the substitution process: 
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with: 
QCSET

ADD Ethanol share in gasoline as an additive, energy equivalent 
BLDET,GAS

ADD,GE Additive share in gasoline 
PRET

Gas  Price ratio between ethanol and gasoline, market prices 
MPAdd

spl Price of additive relative to gasoline 
MPAdd

spr Price spread in which substitution for additives occurs 
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Ethanol in low-level blends 

Low-level blends are characterised by the fact that the lower energy content of 
ethanol compared to gasoline is offset by the higher octane number and oxygen content. 
In some cases, ethanol may additionally be preferred by consumers for non-economic 
reasons (i.e. due to its image of a “green” fuel). In consequence, ethanol competes with 
gasoline without a price discount (and in fact may even receive a premium over gasoline 
on a per litre basis). As the share of ethanol increases, the lower energy content becomes 
more relevant, resulting in a price discount on a per litre basis. In contrast to the case of 
high-level blends or neat fuels, the decision about low-level blends is taken by the fuel 
blenders and distributors rather than the final consumers. In any case, mandatory 
blending requirements represent a lower bound for the amount of ethanol sold in low-
level blends. 

As above, we use sine functions to represent the substitution process: 
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with: 
QCSET

LBLD Ethanol share in gasoline in a low level blend, energy equivalent  
QCSET

OBL Blending obligation, share, energy equivalent 
MPET

prem Maximum premium price of ethanol in low-level blends, relative to gasoline 
price, ratio  
ERATET,Gas Energy content ratio between ethanol and gasoline 
QCSET

Limit Upper limit for ethanol in low-level blends, share 

Ethanol as neat fuel 
Ethanol as a neat fuel can be consumed only by holders of dedicated cars. Today, the 

share of vehicles that can run on ethanol only is minuscule. Instead, flexi-fuel vehicles 
(FFVs) provide the option to be run on pure ethanol (or any high-level blend offered by 
the industry), pure gasoline (or any low-level blend offered as the standard blend) or any 
mixture of the two. It can be expected that, after some adjustments, FFV-owners will 
chose ethanol (or the high-level blend) whenever its price falls below the gasoline price 
adjusted for the lower energy content. If the ethanol price is higher than that, FFV-
owners will chose gasoline (or the low-level blend). A substitution process can be 
expected to take place at ethanol prices close to that level, which, again, is represented 
by sine functions: 
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with: 
QCSET

FFV Ethanol used as neat fuel by flexi-fuel vehicles, share, energy equivalent  
MPFFV

spr Price spread in which substitution for FFVs occurs 
FFV  Share of FFVs in total vehicle fleet – changing exogenously over time 
QCSET

HBLD Ethanol share in high-level blends used in FFVs, energy equivalent 

It should be noted that many of these variables – and in particular the share of FFVs 
in the total vehicle fleet, are likely to evolve over time – a time index has been omitted 
for readability, but needs to be taken into account in the modelling. 

Non-fuel use of ethanol 
Ethanol is a product that is widely used in a large number of sectors, most notably in 

beverages and the chemical and pharmaceutical industry. As a priori ethanol for fuel use 
cannot be differentiated from ethanol destined for other utilisations, the latter need to be 
taken into account as well. 

other
ET

other
ET QCQC =  

Total ethanol use 

The total share of ethanol in spark-ingestion vehicles is the simple sum of the three 
elements presented above: 

FFV
ET

LBLD
ET

ADD
ETET QCSQCSQCSQCS ++=  
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Annex Figure A.1. Graphical representation of ethanol demand  
as a function of the ethanol-gasoline price ratio at a given point in time 
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As these shares are on an energy basis, the ethanol quantity used can be calculated 
based on the total use of gasoline and equivalent fuels, and the relative energy content of 
ethanol: 
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Biodiesel 

There is no such thing as FFVs using biodiesel, and there also is not any ‘additive’ 
effect of low-level blends in fossil diesel fuel. However, most vehicles can stand only 
low-level blends without modification. Within those bands, vehicle owners largely rely 
on the blending industries’ decisions on the biodiesel blending rates – which themselves 
depend on legal conditions and standards. In consequence, a simpler representation of 
biodiesel use is deployed: 
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Again, the absolute consumption of biodiesel would be based on the total use of 
diesel fuels: 
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Trade 

The model for biofuels represents net trade only and abstracts from stock changes: 
j
tr

j
tr

j
tr QCQPNT ,,, −=  

Domestic price determination 

Domestic prices are assumed to be determined by the world price11, including, in the 
case of (substantial) imports, any tariffs the country may impose. To represent the shift 
of the price regime in a the case of a change of net trade position, a logistic function is 
used that describes the price differential between domestic and world price relative to 
the applied tariff (including natural barriers if any) as a function of the net trade position 
relative to the sum of domestic production and consumption as follows: 
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The parameters are chosen such that 

• The range of the resulting relative price differentials is [0 - 1], i.e., a=1 

• The function is strictly monotonously decreasing with falling net imports and growing 
net exports, i.e., 0<c<1 

• The range of net trade positions with the relative price differential being significantly 
different from both 0 and 1 is narrow, i.e., c is small in value 

• The function is squewed to the left to avoid import tariffs from being relevant in 
(substantially) net exporting countries, i.e., b>1 

Parameter values used in this analysis are b = 4 and c = 10-45. While the choice of 
these parameters is somewhat arbitrary, the values represent a compromise between the 
need to closely approximate the real relationship (i.e., strong pass-through of the tariff in 
a net import situation, no pass-through in a net export situation) on the one hand, and of 
ensuring smooth and plausible model responses on the other. With these parameters, the 
relationship between a country’s net trade position and its price link to world markets 
can be represented by the following figure: 
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Annex Figure A.2. Graphical representation of the price link  
between domestic and world markets as a function of the net trade position 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%Pr
ic

e 
di

ff
er

en
ti

al
 d

om
es

ti
c 

-w
or

ld
 

m
ar

ke
t r

el
at

iv
e 

to
 t

ar
iff

 r
at

e

Net trade relative to market size (production plus consumption)

"Exact" Approximated  

Global price determination 

A unique world price for each type of biofuels is used to clear international markets, 
i.e. to ensure that global net exports equal global net imports: 
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Notes 
 

1. For the EU, mandated biofuel use and consumption in Member States without 
mandates but providing tax concessions are modelled separately to account for the 
regional differences within the Union. 

2. The comparability to other countries obviously depends on a range of factors, 
including, among others, similarities in capital markets and investor behaviour. 
While scaling by the proxy for industry investment account for such factors to some 
degree, other adjustments may be necessary in the parameterisation of the capacity 
functions of other countries. 

3. Technical parameters on second-generation biofuel production were obtained from 
Dornburg et al. 

4. Estimating the supply response of second-generation biofuels remains a major 
research topic that needs to be addressed once commercial data on such an industry 
becomes available. 

5. Note that for simplicity, the crop areas of the preceding period are used to estimate 
the share of biomass land 

6. It is assumed that per tonne of cereals one tonne of residues are produced on 
average. This assumption obviously abstracts from important differences across 
cereal types and regions. 

7. Note that, considering the stylised model of equally sized circles around biofuel 

plants, only a maximum of some 90% (
12

π ) can be used for second-generation 

biofuels from agricultural residues. In consequence, the one third of the residues 
maximum available for biofuels would reduce to 30%. Given the approximative 
character of all these calculations we abstract from this detail. 

8. Note that in principle, residues from other crops can be used for biofuel production 
as well. This principle possibility is ignored at this point, as research under way 
suggests that cellulose-based ethanol from crop residues would be mostly from straw 
and stover. 

9. Prices for soyabean meal 44% protein (SBM44) are reported until 2001/02 only. 
Data for 2002/03 to 2006/07 are calculated from prices reported for soyabean meal, 
49-50% protein, Illinois points (SBM50), based on the equation SBM44 = -3.43176 
[3.07] + 0.953679 [184.5] * SBM50 (estimated on monthly data, R² = 99.34%, t-
statistics in brackets). 

10. Given that statistics on DDG markets are less readily available for other countries, 
however, the ruminant production in the base period can help to scale the US 
equation to those of other countries. 

11. The exception is the Canadian ethanol price which is linked directly to the US price 
given the close link between US producing and Canadian demand areas. 
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Annex B.  
 

Environmental Effects Covered  
in the SAPIM Application 

Annex Figure B.1. Environmental effects covered in the empirical application 
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Annex C. 
Economic and Environmental Outcomes  

Under Alternative Scenarios in the SAPIM Application 

Annex Table C1. Baseline, Policy scenario 1, and Policy scenario 2: land allocation, input use intensity, 
production and farmers’ profits 

Crop 
Land 
area, 

ha 

Nitrogen 
use, 

kg/ha 

Herbicide 
use, 

kg/ha 
Production,

kg/ha 
Total 

production, 
kg 

Profits, 
EUR/ha 

Total 
profits, 

EUR 

 Baseline  

RCG 2 33.7 - 4 609 9 219 221 443 
Oats 4 72.4 0.82 3 112 12 449 226 903 
Wheat 21 130.2 0.91 3 397 71 327 263 5 513 
Rape 15 93.8 0.96 1 749 26 229 333 4 997 
Total 42 - - - 119 224 - 11 856 

 Policy scenario 1 – Removal of biofuel support 

Oats 27 74.5 0.84 3 302 89 167 240 6 473 
Rape 15 89.2 0.94 1 728 25 914 298 4 468 
Total 42 - - - 115 081 - 10 941 

 Policy scenario 2 – New biofuel legislation EU and US 

RCG 4 39.6 - 4 913 19 651 236 944 
Wheat 16 130.3 0.91 3 293 52 686 263 4 201 
Rape 22 93.7 0.97 1 686 37 098 348 7 649 
Total 42 - - - 109 435 - 12 794 

 
In the Baseline, Reed Canary Grass (RCG) is cultivated in the 2 lowest productivity 

parcels with low nitrogen use intensity. The low nitrogen application rate is due to the 
high unit transportation costs and thus a low effective output price for RCG. However, 
support payments and low production costs make it profitable to cultivate RCG in the 
lowest productivity parcels. Oats cultivation takes place in the second lowest land 
productivities with low nitrogen and herbicide use intensities.  

In comparison to the Baseline Policy scenario 1 shifts the land allocation towards 
oats and rape. Land allocated to RCG and wheat in the Baseline is now allocated to oats. 
Due to changes in price ratios and land allocation, the average nitrogen and herbicide 
application rate decreases for rape, while for oats both of these increases slightly, since 
oats cultivation shifts to higher land productivities. Relative to the Baseline, total profits 
slightly decrease. 
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The Policy scenario 2 makes RCG cultivation profitable and lowest productivity 
land is allocated to it. This policy scenario increases the profitability of wheat and rape 
cultivation, and thus these two crops exhaust the remaining land available for 
production. The fertilizer use intensity increases clearly for reed canary grass and 
slightly for wheat relative to the Baseline, whereas it slightly decreases for rape.  

Annex Table C2. Baseline, Policy scenario 1, and Policy scenario 2: total nitrogen runoff, total phosphorus 
runoff, total herbicide runoff, total CO2-eq emissions and habitat index value 

Crop N-runoff, 
kg 

P-runoff, 
kg 

Herbicide runoff, 
kg 

CO2-eq emissions,  
tons 

Habitat  
index value 

 Baseline 

RCG 9 1 - 1  
Oats 24 5 0.04 11  
Wheat 192 27 0.22 70  
Rape 106 19 0.17 43  
Total 332 52 0.42 125 138.6 

 Policy scenario 1 – Removal of biofuel support 

Oats 167 33 0.26 74  
Rape 103 19 0.16 42  
Total 270 52 0.42 116 135.7 

 Policy scenario 2 – New EU and US biofuel legislation  

RCG 19 3 - 2  
Wheat 146 21 0.17 53  
Rape 156 28 0.24 63  
Total 321 52 0.41 118 158.1 

 
Annex Table C2 presents total environmental effects under Baseline, Policy 

Scenario 1 and Policy Scenario 2. Relative to the Baseline the total nitrogen runoff 
decreases in Policy Scenario 1. This result is mainly driven by land allocation shift from 
fertilizer intensive wheat to the less fertilizer intensive crops oats and rape. Decreased 
input use intensity in Policy scenario 1 also results in a decrease of the total CO2-eq 
emissions when compared to the Baseline. The habitat index value decreases in Policy 
scenario 1 relative to the Baseline, because of less diversified land use and no allocation 
of land to RCG which is almost twice as valuable habitat to butterflies than cereals.  

In the Policy Scenario 2, higher application rates of fertilizer and herbicide inputs 
for wheat and rape is offset by increased allocation of land to RCG, which is cultivated 
with low fertilizer intensity and no herbicide use. Decrease in CO2-eq emissions is 
mainly driven by an increase in the land allocated to RCG, which has low fertilizer 
intensity and thus low CO2-eq emissions. Moreover, unlike other crops RCG sequesters 
carbon and thus its CO2 emissions for soil are negative. 
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