MEMBERS OF THE JOINT NEA-IAEA URANIUM GROUP

LIST OF REPORTING ORGANISATIONS AND CONTACT PERSONS

THE URANIUM MINING REMEDIATION EXCHANGE GROUP (UMREG)

"The time is ripe to launch an international initiative for consolidation of a good remediation practice for the old uranium mining sites and to limit the environmental impact of the new uranium mines worldwide."

Origins

In 1993 and 1994, the first bilateral US/German meetings were held on remediation of uranium mining and milling legacy sites (that is, sites at which mining practices of the past, no longer licensed today, led to environmental impacts that were left to governments to remediate). These meetings facilitated a useful exchange of ideas on remedial strategies and resulted in the introduction of costefficient solutions and pragmatic administrative procedures based on sound scientific principles and proven technology.

The first multilateral meeting (with the participation of Canada and South Africa) followed in 1995. Later meetings in 1995, 1997, 1998, 2000 and 2001 included participation by representatives from Australia and France. In more recent meetings (2002, 2003, 2005 and 2007), participation progressively increased to include representatives from uranium producing countries in Africa, Latin America, Central and Eastern Europe and Central Asia. Proceedings were published after each UMREG Meeting.

With the aim of promoting "economically and environmentally balanced uranium mining and remediation practices," UMREG provides a non-commercial exchange platform for all members. Shared experiences in UMREG clearly demonstrate that low-impact mining practices both minimise environmental impacts and enhance life-cycle economics of projects.

The present revival of the uranium mining

According to many sources, world energy demand is expected to increase significantly by 2030 and beyond. The majority of base-load electricity is presently generated by power plants using fossil fuels or uranium. The use of uranium as a fuel is a plausible solution to the dilemma of a simultaneously increasing energy demand and reducing greenhouse gas emissions. Hence, uranium demand and prices for the commodity are increasing, as are global exploration and mine development activities.

The need to achieve stakeholder support for uranium mining was underestimated in the past and this, combined with practices that led to environmental impacts in the past, have undermined the credibility of today's uranium miners. Past experience shows that societal concerns must be on the "critical path" of any new uranium mine development project. The revival of the uranium market today also presents an opportunity to governments to remediate uranium mining legacy sites not yet dealt with. Although needs differ between countries, the commitment to remediation is universally seen as an environmentally responsible approach to mining.

Increasing uranium production today typically requires a lengthy review and approval process. While the time required from discovery to the opening of a mine took approximately 3-5 years in the 1950 and 1960s, it had increased to as much as twenty years in the 1990s. This represents a serious hindrance to the economic development of the industry. Accordingly, challenges for governments, industry and regulatory authorities today include:

- \bullet Improving credibility with stakeholders;
- \bullet Establishing global mine development practices that minimise environmental impacts;
- - Continuing to repair environmental damages resulting from past practices no longer licensed today.

Mission of UMREG

To overcome these challenges, UMREG advocates adoption of policies that will minimise environmental impacts from efficient mining operations and promote remediation of the remaining legacy sites. These policies should be developed with full stakeholder consultations to achieve broad consensus and should include:

- - Consideration of the utilisation of mining sites following remediation, driven by stakeholder interest;
- Promotion of efficient, environmentally sound mining, production and full life cycle use of uranium, a non-renewable resource;
- \bullet Distribution of information on past experiences to relevant parties in countries where these approaches have not yet been adopted.

UMREG helps implement these general policy goals by providing an international forum for the exchange of experience on low environmental impact uranium mining and value added remediation, harmonisation of "good environmental practices" and positive involvement of stakeholders in the remediation of uranium mines. UMREG promotes education and implementation of desired policies by linking with institutions, companies and projects involved in the transfer of technology and knowhow and by maintaining a worldwide network of experts and a data and information management system that makes the cumulative experience available to the co-operating parties.

Conclusion

The remediation of the remaining uranium mining legacy sites is an important step toward enhancing future stakeholder support of the industry and hence the stability of future uranium mining projects. The present revival of the uranium mining industry is an ideal setting for governments to advance the cause of remediation of the remaining legacy sites.

New uranium mine developments should follow a complete life-cycle approach to environmental and waste management to keep environmental impacts as low as reasonably achievable to improve stakeholder confidence and minimise the risk of inflated remediation costs.

Beyond compliance with the health, safety and environmental standards, the remediation of the remaining legacy sites should be considered as an investment in the creation of conditions needed for value-added economic development of these regions.

"The true goal of mine remediation has been achieved if the health and environmental hazards have been contained and conditions created that facilitate future utilisation of the site, thus triggering economic development and revitalisation in the post-mining region."

IMPLEMENTATION OF THE POLICIES RECOMMENDED BY UMREG AND CONSIDERATION OF PROJECT FEEDBACK

GLOSSARY OF DEFINITIONS AND TERMINOLOGY

UNITS

Metric units are used in all tabulations and statements. Resources and production quantities are expressed in terms of tonnes (t) contained uranium (U) rather than uranium oxide (U_3O_8) .

RESOURCE TERMINOLOGY

Resource estimates are divided into separate categories reflecting different levels of confidence in the quantities reported. The resources are further separated into categories based on the cost of production.

a) Definitions of resource categories

Uranium resources are broadly classified as either conventional or unconventional. Conventional resources are those that have an established history of production where uranium is a primary product, co-product or an important by-product (e.g., from the mining of copper and gold). Very low-grade resources or those from which uranium is only recoverable as a minor by-product are considered unconventional resources.

Conventional resources are further divided, according to different confidence levels of occurrence, into four categories. The correlation between these resource categories and those used in selected national resource classification systems is shown in Figure A.

Reasonably Assured Resources (RAR) refers to uranium that occurs in known mineral deposits of delineated size, grade and configuration such that the quantities which could be recovered within the given production cost ranges with currently proven mining and processing technology, can be specified. Estimates of tonnage and grade are based on specific sample data and measurements of the deposits and on knowledge of deposit characteristics. Reasonably Assured Resources have a high assurance of existence. Unless otherwise noted, RAR are expressed in terms of quantities of uranium recoverable from mineable ore (see Recoverable Resources).

Inferred Resources refers to uranium, in addition to RAR, that is inferred to occur based on direct geological evidence, in extensions of well-explored deposits, or in deposits in which geological continuity has been established but where specific data, including measurements of the deposits, and knowledge of the deposit's characteristics, are considered to be inadequate to classify the resource as RAR. Estimates of tonnage, grade and cost of further delineation and recovery are based on such sampling as is available and on knowledge of the deposit characteristics as determined in the best known parts of the deposit or in similar deposits. Less reliance can be placed on the estimates in this category than on those for RAR. Unless otherwise noted, Inferred Resources are expressed in terms of quantities of uranium recoverable from mineable ore (see Recoverable Resources).

Figure A. **Approximate Correlation of Terms used in Major Resources Classification Systems**

* United Nations Framework Classification correlation with NEA/IAEA and national classification systems is still under consideration.

The terms illustrated are not strictly comparable as the criteria used in the various systems are not identical. "Grey zones" in correlation are therefore unavoidable, particularly as the resources become less assured. Nonetheless, the chart presents a reasonable approximation of the comparability of terms.

Prognosticated Resources refers to uranium, in addition to Inferred Resources, that is expected to occur in deposits for which the evidence is mainly indirect and which are believed to exist in welldefined geological trends or areas of mineralisation with known deposits. Estimates of tonnage, grade and cost of discovery, delineation and recovery are based primarily on knowledge of deposit characteristics in known deposits within the respective trends or areas and on such sampling, geological, geophysical or geochemical evidence as may be available. Less reliance can be placed on the estimates in this category than on those for Inferred Resources. Prognosticated Resources are normally expressed in terms of uranium contained in mineable ore, i.e., *in situ* quantities.

Speculative Resources (SR) refers to uranium, in addition to Prognosticated Resources, that is thought to exist, mostly on the basis of indirect evidence and geological extrapolations, in deposits discoverable with existing exploration techniques. The location of deposits envisaged in this category could generally be specified only as being somewhere within a given region or geological trend. As the term implies, the existence and size of such resources are speculative. SR are normally expressed in terms of uranium contained in mineable ore, i.e., *in situ* quantities.

b) Cost categories

The cost categories, in United States dollars (USD), used in this report are defined as: <USD 40/kgU, <USD 80/kgU, and <USD 130/kgU. All resource categories are defined in terms of costs of uranium recovered at the ore processing plant

NOTE: It is not intended that the cost categories should follow fluctuations in market conditions.

Conversion of costs from other currencies into USD is done using an average exchange rate for the month of June in that year except for the projected costs for the year of the report, which uses the exchange rate of 1 January 2007 (Appendix 8).

When estimating the cost of production for assigning resources within these cost categories, account has been taken of the following costs:

- \blacksquare The direct costs of mining, transporting and processing the uranium ore.
- \bullet The costs of associated environmental and waste management during and after mining.
- \bullet The costs of maintaining non-operating production units where applicable.
- \bullet In the case of ongoing projects, those capital costs that remain non-amortised.
- \bullet The capital cost of providing new production units where applicable, including the cost of financing.
- \bullet Indirect costs such as office overheads, taxes and royalties where applicable.
- \bullet Future exploration and development costs wherever required for further ore delineation to the stage where it is ready to be mined.
- \bullet Sunk costs are not normally taken into consideration.

c) Relationship between resource categories

Figure B illustrates the inter-relationship between the different resource categories. The horizontal axis expresses the level of assurance about the actual existence of a given tonnage based on varying degrees of geologic knowledge while the vertical axis expresses the economic feasibility of exploitation by the division into cost categories.

Figure B. NEA/IAEA Classification Scheme for Uranium Resources Figure B. **NEA/IAEA Classification Scheme for Uranium Resources**

ľ

Decreasing confidence in estimates

d) Recoverable resources

RAR and Inferred Resource estimates are expressed in terms of recoverable tonnes of uranium, i.e. quantities of uranium recoverable from mineable ore, as opposed to quantities contained in mineable ore, or quantities *in situ*, i.e., not taking into account mining and milling losses. Therefore both expected mining and ore processing losses have been deducted in most cases. If a country reports its resources as *in situ* and the country does not provide a recovery factor, the Secretariat assigns a recovery factor to those resources based on geology and projected mining and processing methods to determine recoverable resources. The recovery factors that have been applied are:

SECONDARY SOURCES OF URANIUM TERMINOLOGY

a) Mixed-oxide fuel (MOX): MOX is the abbreviation for a fuel for nuclear power plants that consists of a mixture of uranium oxide and plutonium oxide. Current practice is to use a mixture of depleted uranium oxide and plutonium oxide.

b) Depleted uranium: Uranium where the 235 U assay is below the naturally occurring 0.7110%. (Natural uranium is a mixture of three isotopes, 238 U – accounting for 99.2836%, 235 U – 0.7110%, and 234 U – 0.0054%). Depleted uranium is a by-product of the enrichment process, where enriched uranium is produced from initial natural uranium feed material.

PRODUCTION TERMINOLOGY¹

a) Production centres: A production centre, as referred to in this report, is a production unit consisting of one or more ore processing plants, one or more associated mines and uranium resources that are tributary to these facilities. For the purpose of describing production centres, they have been divided into four classes, as follows:

⁻1. IAEA (1984), *Manual on the Projection of Uranium Production Capability,* General Guidelines, Technical Report Series No. 238, Vienna, Austria.

- i) **Existing** production centres are those that currently exist in operational condition and include those plants which are closed down but which could be readily brought back into operation.
- ii) **Committed** production centres are those that are either under construction or are firmly committed for construction.
- iii) **Planned** production centres are those for which feasibility studies are either completed or under way, but for which construction commitments have not yet been made. This class also includes those plants that are closed which would require substantial expenditures to bring them back into operation.
- iv) **Prospective** production centres are those that could be supported by tributary RAR and Inferred, i.e., "Identified Resources", but for which construction plans have not yet been made.

b) Production capacity and capability

Production capacity: Denotes the nominal level of output, based on the design of the plant and facilities over an extended period, under normal commercial operating practices.

Production capability: Refers to an estimate of the level of production that could be practically and realistically achieved under favourable circumstances from the plant and facilities at any of the types of production centres described above, given the nature of the resources tributary to them. Projections of production capability are supported only by RAR and/or EAR-I. The projection is presented based on those resources recoverable at costs <USD 80/kgU.

Production: Denotes the amount of uranium output, in tonnes U contained in concentrate, from an ore processing plant or production centre (with milling losses deducted).

c) Mining and milling

In situ **leaching (ISL)**: The extraction of uranium from sandstone using chemical solutions and the recovery of uranium at the surface. ISL extraction is conducted by injecting a suitable uraniumdissolving leach solution (acid or alkaline) into the ore zone below the water table thereby oxidising, complexing, and mobilising the uranium; then recovering the pregnant solutions through production wells, and finally pumping the uranium bearing solution to the surface for further processing.

Heap leaching (HL): Heaps of ore are formed over a collecting system underlain by an impervious membrane. Dilute sulphuric acid solutions are distributed over the top surface of the ore. As the solutions seep down through the heap, they dissolve a significant (50-75%) amount of the uranium in the ore. The uranium is recovered from the heap leach product liquor by ion exchange or solvent extraction.

In place leaching (IPL): involves leaching of broken ore without removing it from an underground mine. This is also sometimes referred to as stope leaching or block leaching.

Co-product: Uranium is a co-product when it is one of two commodities that must be produced to make a mine economic. Both commodities influence output, for example, uranium and copper are co-produced at Olympic Dam in Australia. Co-product uranium is produced using either the open-pit or underground mining methods.

By-product: Uranium is considered a by-product when it is a secondary or additional product. By-product uranium can be produced in association with a main product or with co-products, e.g., uranium recovered from the Palabora copper mining operations in South Africa. By-product uranium is produced using either the open-pit or underground mining methods.

Uranium from phosphates: Uranium has been recovered as a by-product of phosphoric acid production. Uranium is separated from phosphoric acid by a solvent extraction process. The most frequently used reagent is a synergetic mixture of Tri-m-Octyl Phosphine Oxide (TOPO) and Di 2-Ethylhexyl Phosphoric Acid (DEPA).

Ion exchange (IX): Reversible exchange of ions contained in a host material for different ions in solution without destruction of the host material or disturbance of electrical neutrality. The process is accomplished by diffusion and occurs typically in crystals possessing – one or two – dimensional channels where ions are weakly bonded. It also occurs in resins consisting of three-dimensional hydrocarbon networks to which are attached many ionisable groups. Ion exchange is used for recovering uranium from leaching solutions.

Solvent extraction (SX): A method of separation in which a generally aqueous solution is mixed with an immiscible solvent to transfer one or more components into the solvent. This method is used to recover uranium from leaching solutions.

DEMAND TERMINOLOGY

a) Reactor-related requirements: Refers to natural uranium acquisitions *not* necessarily consumption during a calendar year.

ENVIRONMENTAL TERMINOLOGY²

a) Close-out: In the context of uranium mill tailings impoundment, the operational, regulatory and administrative actions required to place a tailings impoundment into long-term conditions such that little or no future surveillance and maintenance are required.

b) Decommissioning: Actions taken at the end of the operating life of a uranium mill or other uranium facility in retiring it from service with adequate regard for the health and safety of workers and members of the public and protection of the environment. The time period to achieve decommissioning may range from a few to several hundred years.

c) Decontamination: The removal or reduction of radioactive or toxic chemical contamination using physical, chemical, or biological processes.

d) Dismantling: The disassembly and removal of any structure, system or component during decommissioning. Dismantling may be performed immediately after permanent retirement of a mine or mill facility or may be deferred.

⁻2. Definitions based on those published in OECD (2002), *Environmental Remediation of Uranium Production Facilities*, Paris.

e) Environmental restoration: Cleanup and restoration, according to predefined criteria, of sites contaminated with radioactive and/or hazardous substances during past uranium production activities.

f) Environmental impact statement: A set of documents recording the results of an evaluation of the physical, ecological, cultural and socio-economic effects of a planned installation, facility, or technology.

g) Groundwater restoration: The process of returning affected groundwater to acceptable quality and quantity levels for future use.

h) Reclamation: The process of restoring a site to predefined conditions, which allows new uses.

i) Restricted release (or use): A designation, by the regulatory body of a country, that restricts the release or use of equipment, buildings, materials or the site because of its potential radiological or other hazards.

j) Tailings: The remaining portion of a metal-bearing ore consisting of finely ground rock and process liquids after some or all of the metal, such as uranium, has been extracted.

k) Tailings impoundment: A structure in which the tailings are deposited to prevent their release into the environment.

l) Unrestricted release (or use): A designation, by the regulatory body of a country, that enables the release or use of equipment, buildings, materials or the site without any restriction.

GEOLOGICAL TERMINOLOGY

a) Uranium occurrence: A naturally occurring, anomalous concentration of uranium.

b) Uranium deposit: A mass of naturally occurring mineral from which uranium could be exploited at present or in the future.

c) Geologic types of uranium deposits³

Uranium resources can be assigned on the basis of their geological setting to the following categories of uranium ore deposit types (arranged according to their approximate economic significance):

- 1. Unconformity-related deposits.
- 2. Sandstone deposits.
- 3. Hematite breccia complex deposits.
- 4. Quartz-pebble conglomerate deposits.
- 5. Vein deposits.
- 6. Intrusive deposits.
- 7. Volcanic and caldera-related deposits.
- 8. Metasomatite deposits.
- 9. Surficial deposits.
- 10. Collapse breccia pipe deposits.
- 11. Phosphorite deposits.
- 12. Other types of deposits.
- 13. Rock types with elevated uranium content.

⁻3. This classification of the geological types of uranium deposits was developed by the IAEA in 1988-89 and updated for use in the Red Book.

1. Unconformity-related deposits: Unconformity-related deposits are associated with and occur immediately below and above an unconformable contact that separates a crystalline basement intensively altered from overlying clastic sediments of either Proterozoic or Phanerozoic age.

The unconformity-related deposits include the following sub-types:

- *Unconformity contact*
	- i. Fracture bound deposits occur in metasediments immediately below the unconformity. Mineralisation is monometallic and of medium grade. Examples include Rabbit Lake and Dominique Peter in the Athabasca Basin, Canada.
	- ii. Clay-bound deposits occur associated with clay at the base of the sedimentary cover directly above the unconformity. Mineralisation is commonly polymetallic and of high to very high grade. An example is Cigar Lake in the Athabasca Basin, Canada
- \bullet *Sub-unconformity-post-metamorphic deposits* Deposits are strata-structure bound in metasediments below the unconformity on which clastic sediments rest. These deposits can have large resources, at low to medium grade. Examples are Jabiluka and Ranger in Australia.
- **2. Sandstone deposits:** Sandstone uranium deposits occur in medium to coarse-grained sandstones deposited in a continental fluvial or marginal marine sedimentary environment. Uranium is precipitated under reducing conditions caused by a variety of reducing agents within the sandstone, for example, carbonaceous material, sulphides (pyrite), hydrocarbons and ferro-magnesium minerals (chlorite), etc. Sandstone uranium deposits can be divided into four main sub-types:
	- \bullet *Roll-front deposits*: The mineralised zones are convex down the hydrologic gradient. They display diffuse boundaries with reduced sandstone on the down-gradient side and sharp contacts with oxidised sandstone on the up-gradient side. The mineralised zones are elongate and sinuous approximately parallel to the strike, and perpendicular to the direction of deposition and groundwater flow. Resources can range from a few hundred tonnes to several thousands of tonnes of uranium, at grades averaging 0.05-0.25%. Examples are Moynkum, Inkay and Mynkuduk (Kazakhstan); Crow Butte and Smith Ranch (United States) and Bukinay, Sugraly and Uchkuduk (Uzbekistan).
	- \bullet *Tabular deposits* consist of uranium matrix impregnations that form irregularly shaped lenticular masses within reduced sediments. The mineralised zones are largely oriented parallel to the depositional trend. Individual deposits can contain several hundreds of tonnes up to $150\,000$ tonnes of uranium, at average grades ranging from 0.05 - 0.5% , occasionally up to 1%. Examples of deposits include Westmoreland (Australia), Nuhetting (China), Hamr-Stráz (Czech Republic), Akouta, Arlit, Imouraren (Niger) and Colorado Plateau (United States).
	- \bullet *Basal channel deposits*: Paleodrainage systems consist of several hundred metres wide channels filled with thick permeable alluvial-fluvial sediments. Here, the uranium is predominantly associated with detrital plant debris in ore bodies that display, in a planview, an elongated lens or ribbon-like configuration and, in a section-view, a lenticular or, more rarely, a roll shape. Individual deposits can range from several hundreds to 20 000 tonnes uranium, at grades ranging from 0.01-3%. Examples are the deposits of Dalmatovskoye (Transural Region), Malinovskoye (West Siberia), Khiagdinskoye (Vitim district) in Russia and Beverley in Australia.
- \bullet *Tectonic/lithologic deposits* occur in sandstone related to a permeable zone. Uranium is precipitated in open zones related to tectonic extension. Individual deposits contain a few hundred tonnes up to 5 000 tonnes of uranium at average grades ranging from 0.1-0.5%. Examples include the deposits of Mas Laveyre (France) and Mikouloungou (Gabon).
- **3. Hematite breccia complex deposits:** Deposits of this group occur in hematite-rich breccias and contain uranium in association with copper, gold, silver and rare earths. The main representative of this type of deposit is the Olympic Dam deposit in South Australia. Significant deposits and prospects of this type occur in the same region, including Prominent Hill, Wirrda Well, Acropolis and Oak Dam as well as some younger breccia-hosted deposits in the Mount Painter area.
- **4. Quartz-pebble conglomerate deposits:** Detrital uranium oxide ores are found in quartzpebble conglomerates deposited as basal units in fluvial to lacustrine braided stream systems older than 2.3-2.4 Ga. The conglomerate matrix is pyritiferous, and gold, as well as other oxide and sulphide detrital minerals are often present in minor amounts. Examples include deposits found in the Witwatersrand Basin where uranium is mined as a by-product of gold. Uranium deposits of this type were mined in the Blind River/Elliot Lake area of Canada.
- **5. Vein deposits:** In vein deposits, the major part of the mineralisation fills fractures with highly variable thickness, but generally important extension along strike. The veins consist mainly of gangue material (e.g. carbonates, quartz) and ore material, mainly pitchblende. Typical examples range from the thick and massive pitchblende veins of Pribram (Czech Republic), Schlema-Alberoda (Germany) and Shinkolobwe (Democratic Republic of Congo), to the stockworks and episyenite columns of Bernardan (France) and Gunnar (Canada), to the narrow cracks in granite or metamorphic rocks, also filled with pitchblende of Mina Fe (Spain) and Singhbhum (India).
- **6. Intrusive deposits:** Deposits included in this type are those associated with intrusive or anatectic rocks of different chemical composition (alaskite, granite, monzonite, peralkaline syenite, carbonatite and pegmatite). Examples include the Rossing and Trekkopje deposits (Namibia), the uranium occurrences in the porphyry copper deposits such as Bingham Canyon and Twin Butte (United States), the Ilimaussaq deposit (Greenland), Palabora (South Africa), as well as the deposits in the Bancroft area (Canada).
- **7. Volcanic and caldera-related deposits**: Uranium deposits of this type are located within and nearby volcanic caldera filled by mafic to felsic volcanic complexes and intercalated clastic sediments. Mineralisation is largely controlled by structures (minor stratabound), occurs at several stratigraphic levels of the volcanic and sedimentary units and extends into the basement where it is found in fractured granite and in metamorphites. Uranium minerals are commonly associated with molybdenum, other sulphides, violet fluorine and quartz. Most significant commercial deposits are located within Streltsovsk caldera in the Russian Federation. Examples are known in China, Mongolia (Dornot deposit), Canada (Michelin deposit) and Mexico (Nopal deposit).
- **8. Metasomatite deposits**: Deposits of this type are confined to the areas of tectono-magmatic activity of the Precambrian shields and are related to near-fault alkali metasomatites, developed upon different basement rocks: granites, migmatites, gneisses and ferruginous quartzites with production of albitites, aegirinites, alkali-amphibolic and carbonaceousferruginous rocks. Ore lenses and stocks are a few metres to tens of metres thick and a few hundred metres long. Vertical extent of ore mineralisation can be up to 1.5 km. Ores are uraninite-brannerite by composition and belong to ordinary grade. The reserves are usually medium scale or large. Examples include Michurinskoye, Vatutinskoye, Severinskoye, Zheltorechenskoye and Pervomayskoye deposits (Ukraine), Lagoa Real, Itataia and Espinharas (Brazil), the Valhalla deposit (Australia) and deposits of the Arjeplog region in the north of Sweden.
- **9. Surficial deposits:** Surficial uranium deposits are broadly defined as young (Tertiary to Recent) near-surface uranium concentrations in sediments and soils. The largest of the surficial uranium deposits are in calcrete (calcium and magnesium carbonates), and they have been found in Australia (Yeelirrie deposit), Namibia (Langer Heinrich deposit) and Somalia. These calcrete-hosted deposits are associated with deeply weathered uranium-rich granites. They also can occur in valley-fill sediments along Tertiary drainage channels and in playa lake sediments (e.g., Lake Maitland, Australia). Surficial deposits also can occur in peat bogs and soils.
- **10. Collapse breccia pipe deposits:** Deposits in this group occur in circular, vertical pipes filled with down-dropped fragments. The uranium is concentrated as primary uranium ore, generally uraninite, in the permeable breccia matrix, and in the arcuate, ring-fracture zone surrounding the pipe. Type examples are the deposits in the Arizona Strip north of the Grand Canyon and those immediately south of the Grand Canyon in the United States.
- **11. Phosphorite deposits**: Phosphorite deposits consist of marine phosphorite of continental-shelf origin containing syn-sedimentary stratiform, disseminated uranium in fine-grained apatite. Phosphorite deposits constitute large uranium resources, but at a very low grade. Uranium can be recovered as a by-product of phosphate production. Examples include New Wales Florida (pebble phosphate) and Uncle Sam (United States), Gantour (Morocco) and Al-Abiad (Jordan). Other type of phosphorite deposits consists of organic phosphate, including argillaceous marine sediments enriched in fish remains that are uraniferous (Melovoe deposit, Kazakhstan).

12. Other deposits

Metamorphic deposits: In metamorphic uranium deposits, the uranium concentration directly results from metamorphic processes. The temperature and pressure conditions, and age of the uranium deposition have to be similar to those of the metamorphism of the enclosing rocks. Examples include the Forstau deposit (Austria) and Mary Kathleen (Australia).

Limestone deposits: This includes uranium mineralisation in the Jurassic Todilto Limestone in the Grants district (United States). Uraninite occurs in intra-formational folds and fractures as introduced mineralisation.

Uranium coal deposits: Elevated uranium contents occur in lignite/coal, and in clay and sandstone immediately adjacent to lignite. Examples are uranium in the Serres Basin (Greece), in North and South Dakota (United States), Koldjat and Nizhne Iliyskoe (Kazakhstan) and Freital (Germany). Uranium grades are very low and average less than 50 ppm U.

13. Rock types with elevated uranium contents: Elevated uranium contents have been observed in different rock types such as pegmatite, granites and black shale. In the past no economic deposits have been mined commercially in these types of rocks. Their grades are very low, and it is unlikely that they will be economic in the foreseeable future.

Rare metal pegmatites: These pegmatites contain Sn, Ta, Nb and Li mineralisation. They have variable U, Th and rare earth elements contents. Examples include Greenbushes and Wodgina pegmatites (Western Australia). The Greenbushes pegmatites commonly have 6-20 ppm U and 3-25 ppm Th.

Granites: A small proportion of un-mineralised granitic rocks have elevated uranium contents. These "high heat producing" granites are potassium feldspar-rich. Roughly 1% of the total number of granitic rocks analysed in Australia have uranium-contents above 50 ppm.

Black Shale: Black shale-related uranium mineralisation consists of marine organic-rich shale or coal-rich pyritic shale, containing syn-sedimentary disseminated uranium adsorbed onto organic material. Examples include the uraniferous alum shale in Sweden and Estonia, the Chatanooga shale (United States), the Chanziping deposit (China), and the Gera-Ronneburg deposit (Germany).

ACRONYM LIST

ENERGY CONVERSION FACTORS

The need to establish a set of factors to convert quantities of uranium into common units of energy appeared during recent years with the increasing frequency of requests for such factors applying to the various reactor types.

ENERGY VALUES FOR URANIUM USED IN VARIOUS RECTOR TYPES¹ **ENERGY VALUES FOR URANIUM USED IN VARIOUS RECTOR TYPES**1

Does not include Pu and U recycled. Does not take into account the requirement of an initial core load, which would reduce the equivalence by about 6%, 1. Does not include Pu and U recycled. Does not take into account the requirement of an initial core load, which would reduce the equivalence by about 6%, if based on a plant life of about 30 years with a 70% capacity factor. if based on a plant life of about 30 years with a 70% capacity factor. $\frac{1}{2}$

Does not take into account the energy consumed for ²³⁵U enrichment in LWR and AGR fuel. The factor to be applied to the energy equivalent under the condition of 3% ²³⁵U enrichment and 0.2% tails assay should be multip 2. Does not take into account the energy consumed for ²³⁵U enrichment in LWR and AGR fuel. The factor to be applied to the energy equivalent under the condition of 3% 235 U enrichment and 0.2% tails assay should be multiplied by 0.957. $\overline{\mathcal{L}}$

NA Not available. Not available. \mathbb{A}

Conversion Factors and Energy Equivalence for Fossil Fuel for Comparison

^{*} World Energy Council standard conversion factors (from WEC, 1998 Survey of Energy Resources, $18th$ Edition).

^{**} With 1 000kWh (final consumption) = 860 Mcal as WEC conversion factor.

LISTING OF ALL RED BOOK EDITIONS (1965-2008) AND NATIONAL REPORTS

Listing of Red Book editions (1965-2008)

INDEX OF NATIONAL REPORTS

INDEX OF NATIONAL REPORTS (contd.)

INDEX OF NATIONAL REPORTS (contd.)

CURRENCY EXCHANGE RATES*

(in national currency units per USD)

** Source*: The Department of Finance of the United Nations Development Programme, New York.

GROUPING OF COUNTRIES AND AREAS WITH URANIUM-RELATED ACTIVITIES

The countries and geographical areas referenced in this report are listed below. Countries followed by "*" are members of OECD.

Canada* Mexico* United States of America*

1. North America

4. Central, Eastern and South-eastern Europe

5. Africa

6. Middle East, Central and Southern Asia

India Iran, Islamic Republic of
Iordan Kazakhstan Jordan Kazakhstan
Pakistan Sri Lanka Pakistan Sri Lanka
Tajikistan Turkmenis Turkmenistan

7. South-eastern Asia

8. Pacific

9. East Asia¹

 China Japan* Mongolia Korea, Republic of* Korea, Democratic People's Republic of

The countries associated with other groupings of nations used in this report are listed below.

Commonwealth of Independent States (CIS) or Newly Independent States (NIS)

European Union

^{1.} Includes Chinese Taipei.

GLOSSARY OF DEFINITIONS AND TERMINOLOGY

UNITS

Metric units are used in all tabulations and statements. Resources and production quantities are expressed in terms of tonnes (t) contained uranium (U) rather than uranium oxide (U_3O_8) .

RESOURCE TERMINOLOGY

Resource estimates are divided into separate categories reflecting different levels of confidence in the quantities reported. The resources are further separated into categories based on the cost of production.

a) Definitions of resource categories

Uranium resources are broadly classified as either conventional or unconventional. Conventional resources are those that have an established history of production where uranium is a primary product, co-product or an important by-product (e.g., from the mining of copper and gold). Very low-grade resources or those from which uranium is only recoverable as a minor by-product are considered unconventional resources.

Conventional resources are further divided, according to different confidence levels of occurrence, into four categories. The correlation between these resource categories and those used in selected national resource classification systems is shown in Figure A.

Reasonably Assured Resources (RAR) refers to uranium that occurs in known mineral deposits of delineated size, grade and configuration such that the quantities which could be recovered within the given production cost ranges with currently proven mining and processing technology, can be specified. Estimates of tonnage and grade are based on specific sample data and measurements of the deposits and on knowledge of deposit characteristics. Reasonably Assured Resources have a high assurance of existence. Unless otherwise noted, RAR are expressed in terms of quantities of uranium recoverable from mineable ore (see Recoverable Resources).

Inferred Resources refers to uranium, in addition to RAR, that is inferred to occur based on direct geological evidence, in extensions of well-explored deposits, or in deposits in which geological continuity has been established but where specific data, including measurements of the deposits, and knowledge of the deposit's characteristics, are considered to be inadequate to classify the resource as RAR. Estimates of tonnage, grade and cost of further delineation and recovery are based on such sampling as is available and on knowledge of the deposit characteristics as determined in the best known parts of the deposit or in similar deposits. Less reliance can be placed on the estimates in this category than on those for RAR. Unless otherwise noted, Inferred Resources are expressed in terms of quantities of uranium recoverable from mineable ore (see Recoverable Resources).

Figure A. **Approximate Correlation of Terms used in Major Resources Classification Systems**

* United Nations Framework Classification correlation with NEA/IAEA and national classification systems is still under consideration.

The terms illustrated are not strictly comparable as the criteria used in the various systems are not identical. "Grey zones" in correlation are therefore unavoidable, particularly as the resources become less assured. Nonetheless, the chart presents a reasonable approximation of the comparability of terms.

Prognosticated Resources refers to uranium, in addition to Inferred Resources, that is expected to occur in deposits for which the evidence is mainly indirect and which are believed to exist in welldefined geological trends or areas of mineralisation with known deposits. Estimates of tonnage, grade and cost of discovery, delineation and recovery are based primarily on knowledge of deposit characteristics in known deposits within the respective trends or areas and on such sampling, geological, geophysical or geochemical evidence as may be available. Less reliance can be placed on the estimates in this category than on those for Inferred Resources. Prognosticated Resources are normally expressed in terms of uranium contained in mineable ore, i.e., *in situ* quantities.

Speculative Resources (SR) refers to uranium, in addition to Prognosticated Resources, that is thought to exist, mostly on the basis of indirect evidence and geological extrapolations, in deposits discoverable with existing exploration techniques. The location of deposits envisaged in this category could generally be specified only as being somewhere within a given region or geological trend. As the term implies, the existence and size of such resources are speculative. SR are normally expressed in terms of uranium contained in mineable ore, i.e., *in situ* quantities.

b) Cost categories

The cost categories, in United States dollars (USD), used in this report are defined as: <USD 40/kgU, <USD 80/kgU, and <USD 130/kgU. All resource categories are defined in terms of costs of uranium recovered at the ore processing plant

NOTE: It is not intended that the cost categories should follow fluctuations in market conditions.

Conversion of costs from other currencies into USD is done using an average exchange rate for the month of June in that year except for the projected costs for the year of the report, which uses the exchange rate of 1 January 2007 (Appendix 8).

When estimating the cost of production for assigning resources within these cost categories, account has been taken of the following costs:

- \blacksquare The direct costs of mining, transporting and processing the uranium ore.
- \bullet The costs of associated environmental and waste management during and after mining.
- \bullet The costs of maintaining non-operating production units where applicable.
- \bullet In the case of ongoing projects, those capital costs that remain non-amortised.
- \bullet The capital cost of providing new production units where applicable, including the cost of financing.
- \bullet Indirect costs such as office overheads, taxes and royalties where applicable.
- \bullet Future exploration and development costs wherever required for further ore delineation to the stage where it is ready to be mined.
- \bullet Sunk costs are not normally taken into consideration.

c) Relationship between resource categories

Figure B illustrates the inter-relationship between the different resource categories. The horizontal axis expresses the level of assurance about the actual existence of a given tonnage based on varying degrees of geologic knowledge while the vertical axis expresses the economic feasibility of exploitation by the division into cost categories.

Figure B. NEA/IAEA Classification Scheme for Uranium Resources Figure B. **NEA/IAEA Classification Scheme for Uranium Resources**

ľ

Decreasing confidence in estimates

d) Recoverable resources

RAR and Inferred Resource estimates are expressed in terms of recoverable tonnes of uranium, i.e. quantities of uranium recoverable from mineable ore, as opposed to quantities contained in mineable ore, or quantities *in situ*, i.e., not taking into account mining and milling losses. Therefore both expected mining and ore processing losses have been deducted in most cases. If a country reports its resources as *in situ* and the country does not provide a recovery factor, the Secretariat assigns a recovery factor to those resources based on geology and projected mining and processing methods to determine recoverable resources. The recovery factors that have been applied are:

SECONDARY SOURCES OF URANIUM TERMINOLOGY

a) Mixed-oxide fuel (MOX): MOX is the abbreviation for a fuel for nuclear power plants that consists of a mixture of uranium oxide and plutonium oxide. Current practice is to use a mixture of depleted uranium oxide and plutonium oxide.

b) Depleted uranium: Uranium where the 235 U assay is below the naturally occurring 0.7110%. (Natural uranium is a mixture of three isotopes, 238 U – accounting for 99.2836%, 235 U – 0.7110%, and 234 U – 0.0054%). Depleted uranium is a by-product of the enrichment process, where enriched uranium is produced from initial natural uranium feed material.

PRODUCTION TERMINOLOGY¹

a) Production centres: A production centre, as referred to in this report, is a production unit consisting of one or more ore processing plants, one or more associated mines and uranium resources that are tributary to these facilities. For the purpose of describing production centres, they have been divided into four classes, as follows:

⁻1. IAEA (1984), *Manual on the Projection of Uranium Production Capability,* General Guidelines, Technical Report Series No. 238, Vienna, Austria.

- i) **Existing** production centres are those that currently exist in operational condition and include those plants which are closed down but which could be readily brought back into operation.
- ii) **Committed** production centres are those that are either under construction or are firmly committed for construction.
- iii) **Planned** production centres are those for which feasibility studies are either completed or under way, but for which construction commitments have not yet been made. This class also includes those plants that are closed which would require substantial expenditures to bring them back into operation.
- iv) **Prospective** production centres are those that could be supported by tributary RAR and Inferred, i.e., "Identified Resources", but for which construction plans have not yet been made.

b) Production capacity and capability

Production capacity: Denotes the nominal level of output, based on the design of the plant and facilities over an extended period, under normal commercial operating practices.

Production capability: Refers to an estimate of the level of production that could be practically and realistically achieved under favourable circumstances from the plant and facilities at any of the types of production centres described above, given the nature of the resources tributary to them. Projections of production capability are supported only by RAR and/or EAR-I. The projection is presented based on those resources recoverable at costs <USD 80/kgU.

Production: Denotes the amount of uranium output, in tonnes U contained in concentrate, from an ore processing plant or production centre (with milling losses deducted).

c) Mining and milling

In situ **leaching (ISL)**: The extraction of uranium from sandstone using chemical solutions and the recovery of uranium at the surface. ISL extraction is conducted by injecting a suitable uraniumdissolving leach solution (acid or alkaline) into the ore zone below the water table thereby oxidising, complexing, and mobilising the uranium; then recovering the pregnant solutions through production wells, and finally pumping the uranium bearing solution to the surface for further processing.

Heap leaching (HL): Heaps of ore are formed over a collecting system underlain by an impervious membrane. Dilute sulphuric acid solutions are distributed over the top surface of the ore. As the solutions seep down through the heap, they dissolve a significant (50-75%) amount of the uranium in the ore. The uranium is recovered from the heap leach product liquor by ion exchange or solvent extraction.

In place leaching (IPL): involves leaching of broken ore without removing it from an underground mine. This is also sometimes referred to as stope leaching or block leaching.

Co-product: Uranium is a co-product when it is one of two commodities that must be produced to make a mine economic. Both commodities influence output, for example, uranium and copper are co-produced at Olympic Dam in Australia. Co-product uranium is produced using either the open-pit or underground mining methods.

By-product: Uranium is considered a by-product when it is a secondary or additional product. By-product uranium can be produced in association with a main product or with co-products, e.g., uranium recovered from the Palabora copper mining operations in South Africa. By-product uranium is produced using either the open-pit or underground mining methods.

Uranium from phosphates: Uranium has been recovered as a by-product of phosphoric acid production. Uranium is separated from phosphoric acid by a solvent extraction process. The most frequently used reagent is a synergetic mixture of Tri-m-Octyl Phosphine Oxide (TOPO) and Di 2-Ethylhexyl Phosphoric Acid (DEPA).

Ion exchange (IX): Reversible exchange of ions contained in a host material for different ions in solution without destruction of the host material or disturbance of electrical neutrality. The process is accomplished by diffusion and occurs typically in crystals possessing – one or two – dimensional channels where ions are weakly bonded. It also occurs in resins consisting of three-dimensional hydrocarbon networks to which are attached many ionisable groups. Ion exchange is used for recovering uranium from leaching solutions.

Solvent extraction (SX): A method of separation in which a generally aqueous solution is mixed with an immiscible solvent to transfer one or more components into the solvent. This method is used to recover uranium from leaching solutions.

DEMAND TERMINOLOGY

a) Reactor-related requirements: Refers to natural uranium acquisitions *not* necessarily consumption during a calendar year.

ENVIRONMENTAL TERMINOLOGY²

a) Close-out: In the context of uranium mill tailings impoundment, the operational, regulatory and administrative actions required to place a tailings impoundment into long-term conditions such that little or no future surveillance and maintenance are required.

b) Decommissioning: Actions taken at the end of the operating life of a uranium mill or other uranium facility in retiring it from service with adequate regard for the health and safety of workers and members of the public and protection of the environment. The time period to achieve decommissioning may range from a few to several hundred years.

c) Decontamination: The removal or reduction of radioactive or toxic chemical contamination using physical, chemical, or biological processes.

d) Dismantling: The disassembly and removal of any structure, system or component during decommissioning. Dismantling may be performed immediately after permanent retirement of a mine or mill facility or may be deferred.

⁻2. Definitions based on those published in OECD (2002), *Environmental Remediation of Uranium Production Facilities*, Paris.

e) Environmental restoration: Cleanup and restoration, according to predefined criteria, of sites contaminated with radioactive and/or hazardous substances during past uranium production activities.

f) Environmental impact statement: A set of documents recording the results of an evaluation of the physical, ecological, cultural and socio-economic effects of a planned installation, facility, or technology.

g) Groundwater restoration: The process of returning affected groundwater to acceptable quality and quantity levels for future use.

h) Reclamation: The process of restoring a site to predefined conditions, which allows new uses.

i) Restricted release (or use): A designation, by the regulatory body of a country, that restricts the release or use of equipment, buildings, materials or the site because of its potential radiological or other hazards.

j) Tailings: The remaining portion of a metal-bearing ore consisting of finely ground rock and process liquids after some or all of the metal, such as uranium, has been extracted.

k) Tailings impoundment: A structure in which the tailings are deposited to prevent their release into the environment.

l) Unrestricted release (or use): A designation, by the regulatory body of a country, that enables the release or use of equipment, buildings, materials or the site without any restriction.

GEOLOGICAL TERMINOLOGY

a) Uranium occurrence: A naturally occurring, anomalous concentration of uranium.

b) Uranium deposit: A mass of naturally occurring mineral from which uranium could be exploited at present or in the future.

c) Geologic types of uranium deposits³

Uranium resources can be assigned on the basis of their geological setting to the following categories of uranium ore deposit types (arranged according to their approximate economic significance):

- 1. Unconformity-related deposits.
- 2. Sandstone deposits.
- 3. Hematite breccia complex deposits.
- 4. Quartz-pebble conglomerate deposits.
- 5. Vein deposits.
- 6. Intrusive deposits.
- 7. Volcanic and caldera-related deposits.
- 8. Metasomatite deposits.
- 9. Surficial deposits.
- 10. Collapse breccia pipe deposits.
- 11. Phosphorite deposits.
- 12. Other types of deposits.
- 13. Rock types with elevated uranium content.

⁻3. This classification of the geological types of uranium deposits was developed by the IAEA in 1988-89 and updated for use in the Red Book.

1. Unconformity-related deposits: Unconformity-related deposits are associated with and occur immediately below and above an unconformable contact that separates a crystalline basement intensively altered from overlying clastic sediments of either Proterozoic or Phanerozoic age.

The unconformity-related deposits include the following sub-types:

- *Unconformity contact*
	- i. Fracture bound deposits occur in metasediments immediately below the unconformity. Mineralisation is monometallic and of medium grade. Examples include Rabbit Lake and Dominique Peter in the Athabasca Basin, Canada.
	- ii. Clay-bound deposits occur associated with clay at the base of the sedimentary cover directly above the unconformity. Mineralisation is commonly polymetallic and of high to very high grade. An example is Cigar Lake in the Athabasca Basin, Canada
- \bullet *Sub-unconformity-post-metamorphic deposits* Deposits are strata-structure bound in metasediments below the unconformity on which clastic sediments rest. These deposits can have large resources, at low to medium grade. Examples are Jabiluka and Ranger in Australia.
- **2. Sandstone deposits:** Sandstone uranium deposits occur in medium to coarse-grained sandstones deposited in a continental fluvial or marginal marine sedimentary environment. Uranium is precipitated under reducing conditions caused by a variety of reducing agents within the sandstone, for example, carbonaceous material, sulphides (pyrite), hydrocarbons and ferro-magnesium minerals (chlorite), etc. Sandstone uranium deposits can be divided into four main sub-types:
	- \bullet *Roll-front deposits*: The mineralised zones are convex down the hydrologic gradient. They display diffuse boundaries with reduced sandstone on the down-gradient side and sharp contacts with oxidised sandstone on the up-gradient side. The mineralised zones are elongate and sinuous approximately parallel to the strike, and perpendicular to the direction of deposition and groundwater flow. Resources can range from a few hundred tonnes to several thousands of tonnes of uranium, at grades averaging 0.05-0.25%. Examples are Moynkum, Inkay and Mynkuduk (Kazakhstan); Crow Butte and Smith Ranch (United States) and Bukinay, Sugraly and Uchkuduk (Uzbekistan).
	- \bullet *Tabular deposits* consist of uranium matrix impregnations that form irregularly shaped lenticular masses within reduced sediments. The mineralised zones are largely oriented parallel to the depositional trend. Individual deposits can contain several hundreds of tonnes up to $150\,000$ tonnes of uranium, at average grades ranging from 0.05 - 0.5% , occasionally up to 1%. Examples of deposits include Westmoreland (Australia), Nuhetting (China), Hamr-Stráz (Czech Republic), Akouta, Arlit, Imouraren (Niger) and Colorado Plateau (United States).
	- \bullet *Basal channel deposits*: Paleodrainage systems consist of several hundred metres wide channels filled with thick permeable alluvial-fluvial sediments. Here, the uranium is predominantly associated with detrital plant debris in ore bodies that display, in a planview, an elongated lens or ribbon-like configuration and, in a section-view, a lenticular or, more rarely, a roll shape. Individual deposits can range from several hundreds to 20 000 tonnes uranium, at grades ranging from 0.01-3%. Examples are the deposits of Dalmatovskoye (Transural Region), Malinovskoye (West Siberia), Khiagdinskoye (Vitim district) in Russia and Beverley in Australia.
- \bullet *Tectonic/lithologic deposits* occur in sandstone related to a permeable zone. Uranium is precipitated in open zones related to tectonic extension. Individual deposits contain a few hundred tonnes up to 5 000 tonnes of uranium at average grades ranging from 0.1-0.5%. Examples include the deposits of Mas Laveyre (France) and Mikouloungou (Gabon).
- **3. Hematite breccia complex deposits:** Deposits of this group occur in hematite-rich breccias and contain uranium in association with copper, gold, silver and rare earths. The main representative of this type of deposit is the Olympic Dam deposit in South Australia. Significant deposits and prospects of this type occur in the same region, including Prominent Hill, Wirrda Well, Acropolis and Oak Dam as well as some younger breccia-hosted deposits in the Mount Painter area.
- **4. Quartz-pebble conglomerate deposits:** Detrital uranium oxide ores are found in quartzpebble conglomerates deposited as basal units in fluvial to lacustrine braided stream systems older than 2.3-2.4 Ga. The conglomerate matrix is pyritiferous, and gold, as well as other oxide and sulphide detrital minerals are often present in minor amounts. Examples include deposits found in the Witwatersrand Basin where uranium is mined as a by-product of gold. Uranium deposits of this type were mined in the Blind River/Elliot Lake area of Canada.
- **5. Vein deposits:** In vein deposits, the major part of the mineralisation fills fractures with highly variable thickness, but generally important extension along strike. The veins consist mainly of gangue material (e.g. carbonates, quartz) and ore material, mainly pitchblende. Typical examples range from the thick and massive pitchblende veins of Pribram (Czech Republic), Schlema-Alberoda (Germany) and Shinkolobwe (Democratic Republic of Congo), to the stockworks and episyenite columns of Bernardan (France) and Gunnar (Canada), to the narrow cracks in granite or metamorphic rocks, also filled with pitchblende of Mina Fe (Spain) and Singhbhum (India).
- **6. Intrusive deposits:** Deposits included in this type are those associated with intrusive or anatectic rocks of different chemical composition (alaskite, granite, monzonite, peralkaline syenite, carbonatite and pegmatite). Examples include the Rossing and Trekkopje deposits (Namibia), the uranium occurrences in the porphyry copper deposits such as Bingham Canyon and Twin Butte (United States), the Ilimaussaq deposit (Greenland), Palabora (South Africa), as well as the deposits in the Bancroft area (Canada).
- **7. Volcanic and caldera-related deposits**: Uranium deposits of this type are located within and nearby volcanic caldera filled by mafic to felsic volcanic complexes and intercalated clastic sediments. Mineralisation is largely controlled by structures (minor stratabound), occurs at several stratigraphic levels of the volcanic and sedimentary units and extends into the basement where it is found in fractured granite and in metamorphites. Uranium minerals are commonly associated with molybdenum, other sulphides, violet fluorine and quartz. Most significant commercial deposits are located within Streltsovsk caldera in the Russian Federation. Examples are known in China, Mongolia (Dornot deposit), Canada (Michelin deposit) and Mexico (Nopal deposit).
- **8. Metasomatite deposits**: Deposits of this type are confined to the areas of tectono-magmatic activity of the Precambrian shields and are related to near-fault alkali metasomatites, developed upon different basement rocks: granites, migmatites, gneisses and ferruginous quartzites with production of albitites, aegirinites, alkali-amphibolic and carbonaceousferruginous rocks. Ore lenses and stocks are a few metres to tens of metres thick and a few hundred metres long. Vertical extent of ore mineralisation can be up to 1.5 km. Ores are uraninite-brannerite by composition and belong to ordinary grade. The reserves are usually medium scale or large. Examples include Michurinskoye, Vatutinskoye, Severinskoye, Zheltorechenskoye and Pervomayskoye deposits (Ukraine), Lagoa Real, Itataia and Espinharas (Brazil), the Valhalla deposit (Australia) and deposits of the Arjeplog region in the north of Sweden.
- **9. Surficial deposits:** Surficial uranium deposits are broadly defined as young (Tertiary to Recent) near-surface uranium concentrations in sediments and soils. The largest of the surficial uranium deposits are in calcrete (calcium and magnesium carbonates), and they have been found in Australia (Yeelirrie deposit), Namibia (Langer Heinrich deposit) and Somalia. These calcrete-hosted deposits are associated with deeply weathered uranium-rich granites. They also can occur in valley-fill sediments along Tertiary drainage channels and in playa lake sediments (e.g., Lake Maitland, Australia). Surficial deposits also can occur in peat bogs and soils.
- **10. Collapse breccia pipe deposits:** Deposits in this group occur in circular, vertical pipes filled with down-dropped fragments. The uranium is concentrated as primary uranium ore, generally uraninite, in the permeable breccia matrix, and in the arcuate, ring-fracture zone surrounding the pipe. Type examples are the deposits in the Arizona Strip north of the Grand Canyon and those immediately south of the Grand Canyon in the United States.
- **11. Phosphorite deposits**: Phosphorite deposits consist of marine phosphorite of continental-shelf origin containing syn-sedimentary stratiform, disseminated uranium in fine-grained apatite. Phosphorite deposits constitute large uranium resources, but at a very low grade. Uranium can be recovered as a by-product of phosphate production. Examples include New Wales Florida (pebble phosphate) and Uncle Sam (United States), Gantour (Morocco) and Al-Abiad (Jordan). Other type of phosphorite deposits consists of organic phosphate, including argillaceous marine sediments enriched in fish remains that are uraniferous (Melovoe deposit, Kazakhstan).

12. Other deposits

Metamorphic deposits: In metamorphic uranium deposits, the uranium concentration directly results from metamorphic processes. The temperature and pressure conditions, and age of the uranium deposition have to be similar to those of the metamorphism of the enclosing rocks. Examples include the Forstau deposit (Austria) and Mary Kathleen (Australia).

Limestone deposits: This includes uranium mineralisation in the Jurassic Todilto Limestone in the Grants district (United States). Uraninite occurs in intra-formational folds and fractures as introduced mineralisation.

Uranium coal deposits: Elevated uranium contents occur in lignite/coal, and in clay and sandstone immediately adjacent to lignite. Examples are uranium in the Serres Basin (Greece), in North and South Dakota (United States), Koldjat and Nizhne Iliyskoe (Kazakhstan) and Freital (Germany). Uranium grades are very low and average less than 50 ppm U.

13. Rock types with elevated uranium contents: Elevated uranium contents have been observed in different rock types such as pegmatite, granites and black shale. In the past no economic deposits have been mined commercially in these types of rocks. Their grades are very low, and it is unlikely that they will be economic in the foreseeable future.

Rare metal pegmatites: These pegmatites contain Sn, Ta, Nb and Li mineralisation. They have variable U, Th and rare earth elements contents. Examples include Greenbushes and Wodgina pegmatites (Western Australia). The Greenbushes pegmatites commonly have 6-20 ppm U and 3-25 ppm Th.

Granites: A small proportion of un-mineralised granitic rocks have elevated uranium contents. These "high heat producing" granites are potassium feldspar-rich. Roughly 1% of the total number of granitic rocks analysed in Australia have uranium-contents above 50 ppm.

Black Shale: Black shale-related uranium mineralisation consists of marine organic-rich shale or coal-rich pyritic shale, containing syn-sedimentary disseminated uranium adsorbed onto organic material. Examples include the uraniferous alum shale in Sweden and Estonia, the Chatanooga shale (United States), the Chanziping deposit (China), and the Gera-Ronneburg deposit (Germany).

ACRONYM LIST

TABLE OF CONTENTS

APPENDICES

Please cite this chapter as:

OECD/International Atomic Energy Agency (2008), "Appendices", in *Uranium 2007: Resources, Production and Demand*, OECD Publishing, Paris.

DOI:<https://doi.org/10.1787/uranium-2007-46-en>

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d'exploitation du droit de copie (CFC) at contact@cfcopies.com.

