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C Appendix C

Assigned uncertainties1

This Appendix describes the origin of the uncertainty estimates that are given in the
TDB tables of selected data. The original text in [1992GRE/FUG] has been retained in
[1995SIL/BID], [1999RAR/RAN] and [2001LEM/FUG], except for some minor
changes. Because of the importance of the uncertainty estimates, the present review
offers a more comprehensive description of the procedures used.

C.1 The general problem

The focus of this section is on the uncertainty estimates of equilibria in solution, where
the key problem is analytical, i.e., the determination of the stoichiometric composition
and equilibrium constants of complexes that are in rapid equilibrium with one another.
We can formulate analyses of the experimental data in the following way: From N
measurements, yi, of the variable y we would like to determine a set of n equilibrium
constants kr, r = 1, 2,…, n, assuming that we know the functional relationship:

y = f(k1, k2, …kr...kn; a1, a2,….) (C.1)

where a1, a2 , etc. are quantities that can be varied but whose values (a1i; a2i; etc.) are
assumed to be known accurately in each experiment from the data sets (yi, a1i, a2i,…), i
= 1, 2, …N. The functional relationship (C.1) is obtained from the chemical model pro-
posed and in general several different models have to be tested before the "best" one is
selected. Details of the procedures are given in Rossotti and Rossotti [1961ROS/ROS].

When selecting the functional relationship (C.1) and determining the set of
equilibrium constants that best describes the experiments one often uses a least-squares
method. Within this method, the “best” description is the one that will minimise the
residual sum of squares, U:

2
1 1 2( ... ; , ...)i i n i i

i
U w y f k k a a (C.2)

where wi is the weight of each experimental measurement yi.

1 This Appendix essentially contains the text of the TDB-3 Guideline, [1999WAN/OST], earlier versions of
which have been printed in all the previous NEA TDB reviews. Because of its importance in the selection
of data and to guide the users of the values in Chapters III and IV the text is reproduced here with minor
revisions.
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The minimum of the function (C.2) is obtained by solving a set of normal
equations:

0, 1,.....
r

U
r n

k
(C.3)

A "true" minimum is only obtained if:

the functional relationship (C.1) is correct, i.e., if the chemical model is
correct.

all errors are random errors in the variable y, in particular there are no
systematic errors.

the random errors in y follow a Gaussian (normal) distribution.

the weight wi(yi, a1i, a2i,….) of an experimental determination is an exact
measure of its inherent accuracy.

To ascertain that the first condition is fulfilled requires chemical insight, such
as information of the coordination geometry, relative affinity between metal ions and
various donor atoms, etc. It is particularly important to test if the chemical equilibrium
constants of complexes that occur in small amounts are chemically reasonable. Too
many experimentalists seem to look upon the least-squares refinement of experimental
data more as an exercise in applied mathematics than as a chemical venture. One of the
tasks in the review of the literature is to check this point. An erroneous chemical model
is one of the more serious type of systematic error.

The experimentalist usually selects the variable that he/she finds most appro-
priate to fulfill the second condition. If the estimated errors in a1i, a2i … are smaller than
the error in yi, the second condition is reasonably well fulfilled. The choice of the error-
carrying variable is a matter of choice based on experience, but one must be aware that
it has implications, especially in the estimated uncertainty.

The presence of systematic errors is, potentially, the most important source of
uncertainty. There is no possibility to handle systematic errors using statistics; statistical
methods may indicate their presence, no more. Systematic errors in the chemical model
have been mentioned. In addition there may be systematic errors in the methods used.
By comparing experimental data obtained with different experimental methods one can
obtain an indication of the presence and magnitude of such errors. The systematic errors
of this type are accounted for both in the review of the literature and when taking the
average of data obtained with different experimental methods. This type of systematic
error does not seem to affect the selected data very much, as judged by the usually very
good agreement between the equilibrium data obtained using spectroscopic, potenti-
ometric and solubility methods.
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The electrode calibration, especially the conversion between measured pH and
log10[H+] is an important source of systematic error. The reviewers have when possi-

ble corrected this error, as seen in many instances in Appendix A.

The assumption of a normal distribution of the random errors is a choice made
in the absence of better alternatives.

Finally, a comment on the weights used in least-squares refinements; this is
important because it influences the uncertainty estimate of the equilibrium constants.
The weights of individual experimental points can be obtained by repeating the experi-
ment several times and then calculating the average and standard deviation of these
data. This procedure is rarely used, instead most experimentalists seem to use unit
weight when making a least-squares analysis of their data. However, also in this case
there is a weighting of the data by the number of experimental determinations in the
parameter range where the different complexes are formed. In order to have comparable
uncertainty estimates for the different complexes, one should try to have the same num-
ber of experimental data points in the concentration ranges where each of these com-
plexes is predominant; a procedure very rarely used.

As indicated above, the assignment of uncertainties to equilibrium constants is
not a straightforward procedure and it is complicated further when there is lack of pri-
mary experimental data. The uncertainty estimates given for the individual equilibrium
constants reported by the authors and for some cases re-estimated by this review are
given in the tables of this and previous reviews. The procedure used to obtain these
estimates is given in the original publications and in the Appendix A discussions. How-
ever, this uncertainty is still a subjective estimate and to a large extent based on "expert
judgment".

C.2 Uncertainty estimates in the selected thermodynamic data

The uncertainty estimate in the selected thermodynamic data is based on the uncertainty
of the individual equilibrium constants or other thermodynamic data, calculated as de-
scribed in the following sections. A weighted average of the individual log10K values is
calculated using the estimated uncertainty of the individual experimental values to as-
sign its weight. The uncertainty in this average is then calculated using the formulae
given in the following text. This uncertainty depends on the number of experimental
data points for N data point with the same estimated uncertainty, , the uncertainty in
the average is / N . The average and the associated uncertainty reported in the tables
of selected data are reported with many more digits than justified only in order to allow
the users to back-track the calculations. The reported uncertainty is much smaller than
the estimated experimental uncertainty and the users of the tables should look at the
discussion of the selected constants in order to get a better estimate of the uncertainty in
an experimental determination using a specific method.
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One of the objectives of the NEA Thermochemical Data Base (TDB) project is
to provide an idea of the uncertainties associated with the data selected in this review.
As a rule, the uncertainties define the range within which the corresponding data can be
reproduced with a probability of 95% at any place and by any appropriate method. In
many cases, the statistical treatment is limited or impossible due to the availability of
only one or few data points. A particular problem has to be solved when significant dis-
crepancies occur between different source data. This appendix outlines the statistical
procedures, which were used for fundamentally different problems, and explains the
philosophy used in this review when statistics were inapplicable. These rules are fol-
lowed consistently throughout the series of reviews within the TDB Project. Four fun-
damentally different cases are considered:

1. One source datum available

2. Two or more independent source data available

3. Several data available at different ionic strengths

4. Data at non-standard conditions: Procedures for data correction
and recalculation.

C.3 One source datum

The assignment of an uncertainty to a selected value that is based on only one experi-
mental source is a highly subjective procedure. In some cases, the number of data
points, on which the selected value is based, allows the use of the “root mean square”
[1982TAY] deviation of the data points, Xi, to describe the standard deviation, sX, asso-
ciated with the average, X :

2
X
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N

i
i

s X X
N

(C.4)

The standard deviation, sX, is thus calculated from the dispersion of the equally
weighted data points, Xi, around the average X , and the probability is 95% that an Xi is
within X 1.96 sX, see Taylor [1982TAY] (pp. 244-245). The standard deviation, sX, is
a measure of the precision of the experiment and does not include any systematic errors.

Many authors report standard deviations, sX, calculated with Eq. (C.4) (but
often not multiplied by 1.96), but these do not represent the quality of the reported val-
ues in absolute terms. Therefore, it is thus important not to confuse the standard devia-
tion, sX, with the uncertainty, . The latter reflects the reliability and reproducibility of
an experimental value and also includes all kinds of systematic errors, sj, that may be
involved. The uncertainty,  can be calculated with Eq. (C.5), assuming that the
systematic errors are independent.
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2 2 =  + ( )X X j
j

s s (C.5)

The estimation of the systematic errors sj (which, of course, have to relate to
X and be expressed in the same units) can only be made by a person who is familiar

with the experimental method. The uncertainty,  has to correspond to the 95% confi-
dence level preferred in this review. It should be noted that for all the corrections and
recalculations made (e.g., temperature or ionic strength corrections) the rules of the
propagation of errors have to be followed, as outlined in Section C.6.2.

More often, the determination of sX is impossible because either only one or
two data points are available, or the authors did not report the individual values. The
uncertainty  in the resulting value can still be estimated using Eq. (C.5) assuming that

2
Xs  is much smaller than 2( )j

j
s , which is usually the case anyway.

C.4 Two or more independent source data

Frequently, two or more experimental data sources are available, reporting experimental
determinations of the desired thermodynamic data. In general, the quality of these
determinations varies widely, and the data have to be weighted accordingly for the cal-
culation of the mean. Instead of assigning weight factors, the individual source data, Xi,
are provided with an uncertainty, i, that also includes all systematic errors and repre-
sents the 95% confidence level, as described in Section C.3. The weighted mean X and
its uncertainty, X , are then calculated according to Eqs. (C.6) and (C.7).
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(C.7)

Eqs. (C.6) and (C.7) may only be used if all the Xi  belong to the same parent distribu-
tion. If there are serious discrepancies among the Xi, one proceeds as described below
under Section C.4.1. It can be seen from Eq. (C.7) that X  is directly dependent on the
absolute magnitude of the i values, and not on the dispersion of the data points around
the mean. This is reasonable because there are no discrepancies among the Xi, and
because the i values already represent the 95% confidence level. The selected uncer-
tainty, X , will therefore also represent the 95% confidence level.

In cases where all the uncertainties are equal, i , Eqs. (C.6) and (C.7) re-
duce to Eqs. (C.8) and (C.9).
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Example C.1:

Five data sources report values for the thermodynamic quantity, X. The reviewer has
assigned uncertainties that represent the 95% confidence level as described in Section
C.3.

i Xi

1 25.3 0.5

2 26.1 0.4

3 26.0 0.5

4 24.85 0.25

5 25.0 0.6

According to Eqs.(C.6) and (C.7), the following result is obtained:

X = (25.3 0.2).

The calculated uncertainty, X = 0.2, appears relatively small, but is statisti-
cally correct, as the values are assumed to follow a Gaussian distribution. As a conse-
quence of Eq. (C.7), X will always come out smaller than the smallest i. Assuming

4 = 0.10 instead of 0.25 would yield X = (25.0 0.1) and 4 = 0.60 would result in
X  = (25.6 0.2). In fact, the values (Xi i) in this example are at the limit of consis-

tency, i.e., the range (X4 4) does not overlap with the ranges (X2 2) and (X3 3).
There might be a better way to solve this problem. Three possible choices seem more
reasonable:

i. The uncertainties, i, are reassigned because they appear too optimistic after fur-
ther consideration. Some assessments may have to be reconsidered and the uncer-
tainties reassigned. For example, multiplying all the i by 2 would yield X =
(25.3 0.3).

ii. If reconsideration of the previous assessments gives no evidence for reassigning
the Xi and i (95% confidence level) values listed above, the statistical conclusion
will be that all the Xi do not belong to the same parent distribution and cannot
therefore be treated in the same group (cf. item iii below for a non-statistical
explanation). The values for i =1, 4 and 5 might be considered as belonging to
Group A and the values for i = 2 and 3 to Group B. The weighted average of the
values in Group A is XA (i = 1, 4, 5) = (24.95 0.21) and of those in Group B, XB

(i = 2, 3) = (26.06 0.31), the second digit after the decimal point being carried
over to avoid loss of information. The selected value is now determined as
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described below under “Discrepancies” (Section C.4.1, Case I). XA and XB are av-
eraged (straight average, there is no reason for giving XA a larger weight than XB),
and X is chosen in such a way that it covers the complete ranges of expectancy
of XA and XB. The selected value is then X = (25.5 0.9).

iii. Another explanation could be that unidentified systematic errors are associated
with some values. If this seems likely to be the case, there is no reason for split-
ting the values up into two groups. The correct way of proceeding would be to
calculate the unweighted average of all the five points and assign an uncertainty
that covers the whole range of expectancy of the five values. The resulting value
is then X = (25.45 1.05), which is rounded according to the rules in Section
C.6.3 to X = (25.4 1.1).

C.4.1 Discrepancies

Two data are called discrepant if they differ significantly, i.e., their uncertainty ranges
do not overlap. In this context, two cases of discrepancies are considered. Case I: Two
significantly different source data are available. Case II: Several, mostly consistent
source data are available, one of them being significantly different, i.e., an “outlier”.

Case I. Two discrepant data: This is a particularly difficult case because the
number of data points is obviously insufficient to allow the preference of one of the two
values. If there is absolutely no way of discarding one of the two values and selecting
the other, the only solution is to average the two source data in order to obtain the
selected value, because the underlying reason for the discrepancy must be unrecognised
systematic errors. There is no point in calculating a weighted average, even if the two
source data have been given different uncertainties, because there is obviously too little
information to give even only limited preference to one of the values. The uncertainty,

X , assigned to the selected mean, X , has to cover the range of expectation of both
source data, X1, X2, as shown in Eq.(C.10),

maxiX X X (C.10)

where i =1, 2, and max  is the larger of the two uncertainties i  see Example C.1.ii and
Example C.2.

Example C.2:

The following credible source data are given:

X1 = (4.5 0.3)

X2 = (5.9 0.5).

The uncertainties have been assigned by the reviewer. Both experimental
methods are satisfactory and there is no justification to discard one of the data. The
selected value is then:
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X  = (5.2 1.2).

Figure C-1: Illustration for Example C.2

Case II. Outliers: This problem can often be solved by either discarding the outlying
data point, or by providing it with a large uncertainty to lower its weight. If, however,
the outlying value is considered to be of high quality and there is no reason to discard
all the other data, this case is treated in a way similar to Case I. Example C.3 illustrates
the procedure.

Example C.3:

The following data points are available. The reviewer has assigned the uncertainties and
sees no justification for any change.

i Xi i

1 4.45 0.35

2 5.9 0.5

3 5.7 0.4

4 6.0 0.6

5 5.2 0.4

There are two data sets that, statistically, belong to different parent distribu-
tions, A and B. According to Eqs. (C.6) and (C.7), the following average values are
found for the two groups: XA(i =1) = (4.45  0.35) and XB(i = 2, 3, 4, 5) = (5.62  0.23).
The selected value will be the straight average of XA and XB, analogous to Example C.1:

X  = (5.0  0.9).

4 4.5 5 5.5 6 6.5

X1 X2

X

X



C.5 Several data at different ionic strengths 757

C.5 Several data at different ionic strengths

The extrapolation procedure for aqueous equilibria used in this review is the specific ion
interaction model outlined in Appendix B. The objective of this review is to provide
selected data sets at standard conditions, i.e., among others, at infinite dilution for aque-
ous species. Equilibrium constants determined at different ionic strengths can, according
to the specific ion interaction equations, be extrapolated to I = 0 with a linear regression
model, yielding as the intercept the desired equilibrium constant at I = 0, and as the
slope the stoichiometric sum of the ion interaction coefficients, . The ion interaction
coefficient of the target species can usually be extracted from  and would be listed in
the corresponding table of Appendix B.

The available source data may sometimes be sparse or may not cover a suffi-
cient range of ionic strengths to allow a proper linear regression. In this case, the correc-
tion to I = 0 should be carried out according to the procedure described in Section C.6.1.

If sufficient data are available at different ionic strengths and in the same inert
salt medium, a weighted linear regression will be the appropriate way to obtain both the
constant at I = 0, X , and . The first step is the conversion of the ionic strength from
the frequently used molar (mol·dm 3, M) to the molal (mol·kg 1, m) scale, as described
in Section II.2. The second step is the assignment of an uncertainty, i, to each data
point Xi at the molality, mk,i, according to the rules described in Section C.3. A large
number of commercial and public domain computer programs and routines exist for
weighted linear regressions. The subroutine published by Bevington [1969BEV]
(pp.104 105) has been used for the calculations in the examples of this appendix. Eqs.
(C.11) through (C.15) present the equations that are used for the calculation of the inter-
cept X and the slope :

2
, , ,

2 2 2 2
1 1 1 1

1 N N N N
k i k i k i ii

i i i ii i i i

m m m XX
X (C.11)

, ,
2 2 2 2

1 1 1 1

1 1N N N N
k i i k i i

i i i ii i i i

m X m X (C.12)

2
,

2
1

1 N
k i

X
i i

m
(C.13)

2
1

1 1N

i i

(C.14)

where
22

, ,
2 2 2

1 1 1

1N N N
k i k i

i i ii i i

m m
. (C.15)



C Assigned uncertainties758

In this way, the uncertainties, i, are not only used for the weighting of the data
in Eqs. (C.11) and (C.12), but also for the calculation of the uncertainties,

X
and ,

in Eqs. (C.13) and (C.14). If the i represents the 95% confidence level,
X

and
will also do so. In other words, the uncertainties of the intercept and the slope do not
depend on the dispersion of the data points around the straight line, but rather directly
on their absolute uncertainties, i.

Example C.4:

Ten independent determinations of the equilibrium constant, 10
*log , for the reaction:

2+ + +
2 2UO  HF(aq)  UO F  H (C.16)

are available in HClO4/NaClO4 media at different ionic strengths. Uncertainties that
represent the 95% confidence level have been assigned by the reviewer. A weighted
linear regression, ( 10

*log + 2D) vs. mk, according to the formula, 10
*log (C.16) +

2D = 10
*log (C.16) mk, will yield the correct values for the intercept,

10
*log (C.16), and the slope, . In this case, mk corresponds to the molality of

4 ClO . D is the Debye-Hückel term, cf. Appendix B.

i
4ClO ,im

10

*log + 2D i

1 0.05 1.88 0.10

2 0.25 1.86 0.10

3 0.51 1.73 0.10

4 1.05 1.84 0.10

5 2.21 1.88 0.10

6 0.52 1.89 0.11

7 1.09 1.93 0.11

8 2.32 1.78 0.11

9 2.21 2.03 0.10

10 4.95 2.00 0.32

The results of the linear regression are:

intercept = (1.837  0.054) = 10
*log (C.16)

slope = (0.029  0.036) =

Calculation of the ion interaction coefficient +
2 4(UO F ,ClO ) = +

2+
2 4(UO ,ClO ) +

4(H ,ClO ) : from 2+
2 4(UO ,ClO )  = (0.46  0.03) kg·mol 1,

+
4(H ,ClO )  = (0.14  0.02) kg·mol 1 (see Appendix B) and the slope of the linear
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regression,  = (0.03  0.04) kg·mol 1, it follows that +
2 4(UO F ,ClO )  =

(0.29  0.05) kg·mol 1. Note that the uncertainty (  0 05) kg·mol 1 is obtained based on
the rules of error propagation as described in Section C.6.2:

2 2 2(0.04) (0.03) (0.02)

The resulting selected values are thus:

10
*log (C.16) = (1.84  0.05)

+
2 4(UO F ,ClO ) = (0.29  0.05) kg·mol 1.

C.5.1 Discrepancies or insufficient number of data points

Discrepancies are principally treated as described in Section C.4. Again, two cases can
be defined. Case I: Only two data points are available. Case II: An “outlier” cannot be
discarded. If only one data point is available, the procedure for correction to zero ionic
strength outlined in Section C.6 should be followed.

Case I. Too few molalities: If only two source data are available, there will be
no straightforward way to decide whether or not these two data points belong to the
same parent distribution unless either the slope of the straight line is known or the two
data refer to the same ionic strength. Drawing a straight line right through the two data
points is an inappropriate procedure because all the errors associated with the two
source data would accumulate and may lead to highly erroneous values of 10log K  and

. In this case, an ion interaction coefficient for the key species in the reaction in
question may be selected by analogy (charge is the most important parameter), and a
straight line with the slope  as calculated may then be drawn through each data
point. If there is no reason to discard one of the two data points based on the quality of
the underlying experiment, the selected value will be the unweighted average of the two
standard state data point obtained by this procedure, and its uncertainty must cover the
entire range of expectancy of the two values, analogous to Case I in Section C.4. It
should be mentioned that the ranges of expectancy of the corrected values at I = 0 are
given by their uncertainties, which are based on the uncertainties of the source data at I

 0 and the uncertainty in the slope of the straight line. The latter uncertainty is not an
estimate, but is calculated from the uncertainties in the ion interaction coefficients
involved, according to the rules of error propagation outlined in Section C.6.2. The ion
interaction coefficients estimated by analogy are listed in the table of selected ion inter-
action coefficients (Appendix B), but they are flagged as estimates.

Case II. Outliers and inconsistent data sets: This case includes situations
where it is difficult to decide whether or not a large number of points belong to the same
parent distribution. There is no general rule on how to solve this problem, and decisions
are left to the judgment of the reviewer. For example, if eight data points follow a
straight line reasonably well and two lie way out, it may be justified to discard the “out-
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liers”. If, however, the eight points are scattered considerably and two points are just a
bit further out, one can probably not consider them as “outliers”. It depends on the par-
ticular case and on the judgment of the reviewer whether it is reasonable to increase the
uncertainties of the data to reach consistency, or whether the slope, , of the straight
line should be estimated by analogy.

Example C.5:

Six reliable determinations of the equilibrium constant, 10log , of the reaction:
2+
2 2UO  + SCN  UO SCN (C.17)

are available in different electrolyte media:

Ic = 0.1 M (KNO3) 10log (C.17) =  (1.19  0.03)

Ic = 0.33 M (KNO3) 10log (C.17) =  (0.90  0.10)

Ic = 1.0 M (NaClO4) 10log (C.17) =  (0.75  0.03)

Ic = 1.0 M (NaClO4) 10log (C.17) =  (0.76  0.03)

Ic = 1.0 M (NaClO4) 10log (C.17) =  (0.93  0.03)

Ic = 2.5 M (NaNO3) 10log (C.17) =  (0.72  0.03)

The uncertainties are assumed to represent the 95% confidence level. From the
values at Ic = 1 M, it can be seen that there is a lack of consistency in the data, and that a
linear regression similar to that shown in Example C.4 would be inappropriate. Instead,
the use of  values from reactions of the same charge type is encouraged. Analogies
with  are more reliable than analogies with single  values due to canceling effects.
For the same reason, the dependency of  on the type of electrolyte is often smaller
than for single  values.

A reaction of the same charge type as Reaction (C.17), and for which  is
well known, is:

2+
2 2UO  + Cl  UO Cl . (C.18)

The value of (C.18) = (0.25  0.02) kg · mol–1 was obtained from a linear
regression using 16 experimental values between Ic = 0 1 M and Ic = 3 M Na(Cl,ClO4)
[1992GRE/FUG]. It is thus assumed that:

(C.17) = (C.18) = (0.25  0.02) kg · mol–1.

The correction of 10log (C.17) to Ic = 0 is done using the specific ion interac-
tion equation, cf. TDB-2, which uses molal units:

10log  + 4D = 10log Im. (C.19)

D is the Debye-Hückel term and Im the ionic strength converted to molal units
by using the conversion factors listed in Table II-5. The following list gives the details
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of this calculation. The resulting uncertainties in 10log  are obtained based on the rules
of error propagation as described in Section C.6.2.

Table C-1: Details of the calculation of equilibrium constant corrected to I = 0, using
(C.19).

Im electrolyte
10

log 4D Im.
10

log

0.101 KNO3 (1.19  0.03) 0.438 0.025 (1.68  0.03)a

0.335 KNO3 (0.90  0.10) 0.617 0.084 (1.65  0.10)a

1.050 NaClO4 (0.75  0.03) 0.822 0.263 (1.31  0.04)

1.050 NaClO4 (0.76  0.03) 0.822 0.263 (1.32  0.04)

1.050 NaClO4 (0.93  0.03) 0.822 0.263 (1.49  0.04)

2.714 NaNO3 (0.72  0.03) 0.968 0.679 (1.82  0.13)a

a: These values were corrected for the formation of the nitrate complex, +
2 3UO NO , by using

+
10 2 3log (UO NO )K  = (0.30  0.15) [1992GRE/FUG].

As was expected, the resulting values, 10log , are inconsistent and have
therefore to be treated as described in Case I of Section C.4. That is, the selected value
will be the unweighted average of 10log , and its uncertainty will cover the entire
range of expectancy of the six values. A weighted average would only be justified if the
six values of 10log  were consistent. The result is:

10log  = (1.56  0.39).

C.6 Procedures for data handling

C.6.1 Correction to zero ionic strength

The correction of experimental data to zero ionic strength is necessary in all cases where
a linear regression is impossible or appears inappropriate. The method used throughout
the review is the specific ion interaction equations described in detail in Appendix B.
Two variables are needed for this correction, and both have to be provided with an
uncertainty at the 95% confidence level: the experimental source value, 10log K or

10log , and the stoichiometric sum of the ion interaction coefficients, . The ion
interaction coefficients (see Tables B-4, B-5, B-6 and B-7 of Appendix B) required to
calculate  may not all be known. Missing values therefore need to be estimated. It is
recalled that the electric charge has the most significant influence on the magnitude of
the ion interaction coefficients, and that it is in general more reliable to estimate
from known reactions of the same charge type, rather than to estimate single  values.
The uncertainty of the corrected value at I = 0 is calculated by taking into account the
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propagation of errors, as described below. It should be noted that the ionic strength is
frequently given in moles per dm3 of solution (molar, M) and has to be converted to
moles per kg H2O (molal, m), as the model requires. Conversion factors for the most
common inert salts are given in Table II.5.

Example C.6:

For the equilibrium constant of the reaction:

M3+ + 2 H2O(l) + +
2M(OH)  + 2 H , (C.20)

only one credible determination in 3 M NaClO4 solution is known to be, 10
*log (C.20)

= 6.31, to which an uncertainty of  0.12 has been assigned. The ion interaction coef-
ficients are as follows:

3+
4( , )M ClO  = (0.56  0.03) kg·mol 1,

+
2 4(M(OH) ,ClO )  = (0.26  0.11) kg·mol 1,

+
4(H ,ClO )  = (0.14  0.02) kg·mol 1.

The values of  and  can be obtained readily (cf. Eq. (C.22)):
+ + 3+
2 4 4 4( , ) ( , )(M(OH) ,ClO )  2 H ClO M ClO = – 0.22 kg·mol–1,

2 2 2 1 = (0.11) (2 0.02) (0.03)  0.12 kg mol .

The two variables are thus:

10
*log (C.20) = (6.31  0.12),

= (0.02  0.12) kg·mol 1.

According to the specific ion interaction model the following equation is used
to correct for ionic strength for the reaction considered here:

10
*log (C.20) + 6D = 10

*log (C.20)
4ClO

m

D is the Debye-Hückel term:

0.509
(1 1.5 )

m

m

I
D

I
.

The ionic strength, Im, and the molality,
4ClO

m (
4ClOmI m ), have to be

expressed in molal units, 3 M NaClO4 corresponding to 3.5 m NaClO4 (see Section
II.2), giving D = 0.25. This results in:

10
*log (C.20) = 4.88.

The uncertainty in 10
*log  is calculated from the uncertainties in 10

*log
and  (cf. Eq. (C.22)):
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* *10 410

2 2 2 2
log ClOlog = + ( ) (0.12) (3.5 0.12) = 0.44m

The selected, rounded value is:

10
*log (C.20) = (4.9  0.4).

C.6.2 Propagation of errors

Whenever data are converted or recalculated, or other algebraic manipulations are per-
formed that involve uncertainties, the propagation of these uncertainties has to be taken
into account in a correct way. A clear outline of the propagation of errors is given by
Bevington [1969BEV]. A simplified form of the general formula for error propagation
is given by Eq.(C.21), supposing that X is a function of Y1, Y2,…,YN .

2
2

1
i

N

X Y
i i

X
Y

(C.21)

Eq. (C.21) can be used only if the variables, Y1, Y2,…,YN , are independent or if
their uncertainties are small, i.e., the covariances can be disregarded. One of these two
assumptions can almost always be made in chemical thermodynamics, and Eq. (C.21)
can thus almost universally be used in this review. Eqs. (C.22) through (C.26) present
explicit formulas for a number of frequently encountered algebraic expressions, where
c, c1, c2 are constants.

X = c1Y1 c2Y2 : 1 2

2 2 2
1 2( ) ( )X Y Yc c (C.22)

X =  cY1Y2 and X = 1

2

cY
Y

 : 1 2

2 22

1 2

Y YX

X Y Y
(C.23)

X = 2
1

cc Y  : 2
X Yc

X Y
(C.24)

X = 2
1

c Yc e  : 2
X

Yc
X

(C.25)

X = 1 2ln( )c c Y  : 1
Y

X c
Y

(C.26)

Example C.7:

A few simple calculations illustrate how these formulas are used. The values have not
been rounded.

Eq. (C.22) : r mG  = 2·[ (277.4  4.9)] kJ·mol 1 [ (467.3  6.2)] kJ·mol 1

= (87.5  11.6) kJ·mol 1.

Eq. (C.23) : (0.038 0.002) (8.09 0.96)
(0.0047 0.0005)

K
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Eq. (C.24) : K = 4·(3.75  0.12)3 = (210.9  20.3)

Eq. (C.25) :
r m

R ;
G
TK e r mG  = (2.7  0.3) kJ·mol 1

R = 8.3145 J·K 1·mol 1

T = 298.15 K

K  = (2.97  0.36).

Note that powers of 10 have to be reduced to powers of e, i.e., the variable has
to be multiplied by ln(10), e.g.,

10 10log (ln(10) log )
10log (2.45 0.10); 10 (282 65).K KK K e

Eq. (C.26) : r m R ln ;G T K K = (8.2  1.2)  106

R = 8.3145 J·K 1·mol 1

T = 298.15 K

r mG = (39.46  0.36) kJ·mol 1

ln K = (15.92  0.15)

10log ln / ln(10) (6.91 0.06).K K

Again, it can be seen that the uncertainty in 10log K  cannot be the same as in
ln K . The constant conversion factor of ln(10) = 2.303 is also to be applied to the
uncertainty.

C.6.3 Rounding

The standard rules to be used for rounding are:

1. When the digit following the last digit to be retained is less than 5, the last digit
retained is kept unchanged.

2. When the digit following the last digit to be retained is greater than 5, the last
digit retained is increased by 1.

3. When the digit following the last digit to be retained is 5 and

a) there are no digits (or only zeroes) beyond the 5, an odd digit in the
last place to be retained is increased by 1 while an even digit is kept
unchanged.

b) other non-zero digits follow, the last digit to be retained is increased
by 1, whether odd or even.

This procedure avoids introducing a systematic error from always dropping or
not dropping a 5 after the last digit retained.
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When adding or subtracting, the result is rounded to the number of decimal
places (not significant digits) in the term with the least number of places. In multiplica-
tion and division, the results are rounded to the number of significant digits in the term
with the least number of significant digits.

In general, all operations are carried out in full, and only the final results are
rounded, in order to avoid the loss of information from repeated rounding. For this rea-
son, several additional digits are carried in all calculations until the final selected data
set is developed, and only then are data rounded.

C.6.4 Significant digits

The uncertainty of a value basically defines the number of significant digits a value
should be given.

Example: (3.478  0.008)

(3.48  0.01)

(2.8  0.4)

(10  1)

(105  20).

In the case of auxiliary data or values that are used for later calculations, it is
often inconvenient to round to the last significant digit. In the value (4.85  0.26), for
example, the “5” is close to being significant and should be carried along a recalculation
path in order to avoid loss of information. In particular cases, where the rounding to
significant digits could lead to slight internal inconsistencies, digits with no significant
meaning in absolute terms are nevertheless retained. The uncertainty of a selected value
always contains the same number of digits after the decimal point as the value itself.



From:
Chemical Thermodynamics of Thorium, Volume 11

Access the complete publication at:
https://doi.org/10.1787/9789264056688-en

Please cite this chapter as:

OECD/Nuclear Energy Agency (2008), “Appendix C: Assigned uncertainties”, in Chemical Thermodynamics
of Thorium, Volume 11, OECD Publishing, Paris.

DOI: https://doi.org/10.1787/9789264056688-16-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments
employed herein do not necessarily reflect the official views of OECD member countries.

This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any
territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Extracts from
publications may be subject to additional disclaimers, which are set out in the complete version of the publication, available at
the link provided.

The use of this work, whether digital or print, is governed by the Terms and Conditions to be found at
http://www.oecd.org/termsandconditions.

https://doi.org/10.1787/9789264056688-en
https://doi.org/10.1787/9789264056688-16-en
http://www.oecd.org/termsandconditions



