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Introduction 

An important safety concern regarding long-term recirculation cooling following a loss of 
coolant accident (LOCA) is the transport of debris materials to interceptors (i.e. trash racks, debris 
screens, suction strainers) inside containment and the potential for debris accumulation to result in 
adverse blockage effects. Debris resulting from a LOCA, together with pre-existing debris, could 
block the emergency core cooling system (ECCS) debris interceptors and result in degradation or loss 
of recirculation flow margin. Potential debris sources can be divided into three categories: (1) debris 
that is generated by the LOCA and is transported by blowdown forces (e.g. insulation, paint);  
(2) debris that is generated or transported by washdown; and (3) other debris that existed before a 
LOCA (dust, sand, etc.). Each debris source is separately evaluated to estimate the quantity and other 
characteristics necessary to assess the fraction that could be transported to the containment 
recirculation sump and its combined effect on recirculation flow. 

An initial step in evaluating post-accident sump performance is the determination of the amount 
of debris generated from a postulated breach in the piping system. Current regulatory guidance calls 
for determination of the quantity and characteristics of debris generated by a postulated LOCA 
covering a range of break sizes, break locations, and other properties, in a manner that provides 
assurance that the most severe postulated LOCAs are calculated. Methods for determining debris 
generation typically utilise a bounding combination of deterministic and mechanistic methods to 
provide a conservative representation of the destructive behaviour of a postulated break. These 
methods provide a conservative estimation of debris generation based upon models that are not 
representative of the expected behaviour of pipe breaks.   

This paper presents a model for use by pressurised water reactor (PWR) plants that provides a 
more realistic representation of one aspect of debris generation modelling (break size) while 
maintaining an overall conservative representation of the debris generation potential of postulated 
breaks. The proposed model utilises fracture mechanics as the basis for determining a break size that is 
realistically conservative. This break size is then used in determining the quantity of debris that would 
be generated from identified break locations. 

The fracture mechanics techniques described in this paper are the same techniques that have 
been used successfully in the support of leak before break (LBB) and the application of LBB to 
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postulated leakage cracks in large reactor coolant piping in PWRs. These leakage cracks have leak 
rates well above the demonstrated PWR leak detection capabilities (typically 10 gpm); while at the 
same time have been shown to remain stable under all normal and off-normal plant operating 
conditions. 

While the proposed treatment method and LBB applications utilise the same technical basis, the 
method proposed in support of debris generation differs substantially from an LBB application. LBB 
applications1 typically use fracture mechanics to demonstrate that the probability of fluid system 
piping rupture is extremely low, and using this basis, local dynamic effects are excluded. The 
proposed fracture mechanic approach continues to include the local dynamic effects (e.g. debris 
generation) but uses fracture mechanics as a basis for determining the amount of debris that is 
generated by the postulated break via identification of an effective break area. Therefore, this method 
credits the demonstrated toughness of PWR piping, yet defines a conservative design input for sump 
performance evaluations. 

The proposed model will be one of the options available for use by PWR licensees as a step in 
the overall analysis effort necessary to demonstrate compliance with regulatory requirements 
governing operation of the ECC and containment spray systems (CSS). 

2. Summary of current guidance and need for revised approach 

Upon initiation of a break in the reactor coolant system of a PWR, the forces released by the 
break have the potential to dislodge piping thermal insulation and other materials in the vicinity of the 
break. A portion of this material will be transported to the containment floor by the break flow and by 
containment sprays. Upon initiation of recirculation flow from the containment sump to the reactor 
coolant system, some of the debris in the lower containment elevations will be transported to and 
accumulate on the containment sump screens. The resultant increase in resistance to the flow by the 
debris accumulating on the containment sump screen has the potential to challenge the capability of 
the ECCS to provide long-term cooling to the reactor core. In order to calculate plant response to a 
postulated event and the potential for significant blockage of the containment sump screens, it is 
necessary to take into account a wide range of phenomena and processes. These phenomena and 
processes are highly dependent upon plant design and operation as well as the specifics of the 
postulated LOCA event. The complexity and multivariate nature of the event progression, coupled 
with the absence of a comprehensive database addressing the full range of encountered phenomena 
inevitably leads to a calculation process that accounts for the resulting uncertainties in a conservative 
manner. 

Typically the analyses investigating ECCS operation during the recirculation phase divide the 
process into three separate phases: (1) debris generation; (2) debris transport; and (3) debris 
accumulation and head loss. Each phase of the calculation process, while interdependent, involves its 
own set of phenomena and uncertainties. Known limitations in the knowledge base of these 
phenomena and associated calculation methods are typically accounted for in a bounding fashion 
during each phase of the process. The combined effect of these bounding calculations is a pessimistic 
prediction of ECCS recirculation performance that, while conservative, provides little insight into the 
realistically expected performance during a design basis event. An additional complicating factor is 
the realisation that, unlike most design basis calculations, there is no unique set of conditions that can 
                                                      
1.  Applications utilising the provisions of General Design Criterion 4 contained in Appendix A to 10CFR 

Part 50, that allow the exclusion of local dynamic effects from the design basis for qualified piping 
systems. 
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be repeatedly shown to represent the worst case for recirculation performance. This necessitates either 
a full scope set of calculations looking at an effectively boundless set of possible permutations and 
combinations of conditions, or a more limited set of calculations that combines conditions in a 
bounding and often unrepresentative manner. 

While it is not the intent of this paper to address the full set of calculations necessary to assess 
ECCS and CSS operation in the recirculation mode, it is informative to discuss current guidance and 
practices for the debris generation phase of the calculations. 

2.1 Break size and location 

Because the size and location of the break have a key influence on a number of key parameters 
that are specific to each plant’s design and operation (e.g. debris generation quantities, debris transport 
capability, containment flood-up level and timing), it is not possible to predetermine the limiting break 
size or its location. The current practice is to analyse a full range of break sizes, ranging from the 
smallest break that has the potential to lead to ECCS recirculation operation to a full double-ended 
guillotine break of the largest reactor coolant system pipe. This full range of break sizes is postulated 
for a wide range of potential break locations to address factors such as variations in insulation 
materials on and around postulated break locations and proximity to the recirculation sump and its 
influence on debris transport. 

Current guidance calls for debris generation to be calculated for a number of postulated LOCAs 
of different sizes, locations, and other properties sufficient to provide assurance that the most severe 
postulated LOCAs are calculated. Proposed revision 3 to Regulatory Guide 1.82 [1] calls for the 
following postulated break sizes and locations to be considered: 

1. Breaks in the hot leg, cold leg, intermediate leg, and, depending on the plant licensing basis, 
main steam and main feedwater lines with the largest amount of potential debris within the 
postulated zone of influence; 

2. Large breaks with two or more different types of debris, including the breaks with the most 
variety of debris, within the expected zone of influence; 

3. Breaks in areas with the most direct path to the sump; 

4. Medium and large breaks with the largest potential particulate debris to insulation ratio by 
weight; and 

5. Breaks that generate an amount of fibrous debris that, after its transport to the sump screen, 
creates a minimum uniform thin bed (1/8 inch layer of fiber) to filter particulate debris.2 

This process is applied in a deterministic fashion without consideration of the probability of a 
limiting size break occurring at the limiting location on the RCS. This can lead to a condition where 
the limiting break is controlled by a unique combination of break size, location and transport 
assumptions. This factor, in conjunction with other, more traditional, design basis assumptions  
(e.g. limiting single failure, maximum uncertainties on setpoints, timings, and flow rates) can easily 
lead to one or more extremely low probability events dominating calculation results. 
                                                      
2. Screen blockage experiments have determined that a 1/8 inch layer of fiber combined with particulate 

debris can result in significant head loss. Fiber layers thicker than 1/8 inch result in lower head loss, while 
layers less than 1/8 inch are unstable and tend toward self destruction as head loss increases. The 
uniqueness of the set of conditions that result in a stable “thin-bed” of fiber and particulate is not 
addressed in current guidance. 
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2.2 Debris generation 

Given a postulated break size and location, the next step is to calculate (or estimate) the quantity 
and size distribution of debris that could be generated as a direct consequence of the break. The debris 
generation capability of a break is dependent on a number of factors including break size, break 
opening characteristics and break orientation, as well as characteristics of materials and structures 
surrounding the break. While a number of tests have been performed to investigate the mechanics of 
debris generation, these tests are limited in scope and both the tests and the resultant interpretation of 
test data have incorporated simplifying/bounding assumptions to address variability in key parameters. 

One important simplifying assumption used in both debris generation tests and subsequent 
modelling of the tests is that the break opening time is instantaneous.3 This is a carry-over assumption 
from thermal hydraulic analyses of reactor coolant system response performed in accordance with 
Appendix K to 10CFR Part 50.4 A consequence of this assumption for debris generation is the 
generation of an acoustic shock wave. This pressure wave is believed to be a major contributor to 
debris generation surrounding the break. Component insulation is destroyed initially by the blast 
effects of a shock wave that expands away from the break. This destruction is continued by the two-
phase jet of fluid emanating from the break. Experiments show that the shock wave may cause 
substantial damage to even the most heavily reinforced insulating constructions (e.g. steel-jacketed 
RMI or fiber) if they are located sufficiently close to the break. 

In order for a shock wave to occur, the break opening time (BOT) must be on the same order as 
the acoustic propagation time across the piping. If the BOT is long relative to the acoustic propagation 
time then a shock wave will not occur and debris generation will be predominated by jet impact and 
displacement forces. As part of its evaluation of the potential for shock waves following a double-
ended guillotine break General Electric [2] estimated that a shock wave will not be generated for large 
bore piping break opening times greater than approximately 10 milliseconds. Realistic estimates of 
break opening times for a full double-ended rupture derived from mechanical response analyses show 
that the quickest opening time for large bore PWR piping is on the order of 100 milliseconds. 
However, the presumption of an instantaneous break opening time and resultant shock wave remains 
in regulatory guidance applicable to debris generation. Regulatory guidance contained in Revision 3 
(proposed) to RG 1.82 states: 

� The shock wave generated during postulated pipe break and the subsequent jet should be 
the basis for estimating the amount of debris generated and the size or size distribution of 
the debris generated within the zone of influence. 

The assumption of an instantaneous opening of the break is an unwarranted conservatism, and 
leads to a significant overestimation of the debris generation potential for a postulated break. 

Determination of the amount of debris that is generated for a given break is also complicated by 
the complexity in modelling a three-dimensional jet of two-phase fluid expanding into a region 

                                                      
3.   Instantaneous break opening is simulated in debris generation tests through the use of fast opening rupture 

disks designed to open in a time span of approximately one millisecond. 

4.   Appendix K to 10CFR Part 50 covers required and acceptable features of ECCS evaluation models 
designed to address core response and ECCS cooling performance following a design basis LOCA event. 
These analyses are performed to demonstrate compliance with 10CFR50.46 performance criteria 
addressing peak cladding temperature, maximum cladding oxidation and core coolability (flow channel 
blockage resulting from fuel rod ballooning). Separate analyses, using other “non Appendix K” models 
are used to demonstrate compliance with 10CFR50.46 criteria not addressed by Appendix K. 
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composed of a multitude of materials in widely varying geometric configurations. A number of 
conservative simplifications of the problem have been proposed and used. One method for estimating 
the amount of debris generated by a postulated LOCA is to define a spherical zone of influence. The 
size of the zone of influence is dependent of the size of the break and on the materials considered 
within the zone. Once the zone of influence is defined, all materials within the zone are assumed to be 
damaged. The simplicity of these models inevitably results in an overestimation of the quantity of 
debris generated by a postulated break. 

The quantity of debris that can be generated by a break based on assumptions and conservatisms 
cited above can be seen in results presented in NUREG/CR-6762 [3]. The reported results of debris-
generation simulations show debris volumes of 1 700 ft3 for a large LOCA (> 6 inch diameter), 
compared to 40 ft3 for a medium LOCA (4 to 6 inch diameter) and 25 ft3 for a small LOCA (2 to 
4 inch diameter). 

In summary, current guidance calls for ECCS performance to be assessed in response to the 
most limiting set of conditions. One of the main controlling factors in calculations to assess ECCS 
recirculation performance is debris generation. The set of assumptions called for by current regulatory 
guidance result in ECCS performance being assessed in response to a spectrum of break sizes and 
locations. The probability of the limiting size break(s) occurring at specific locations is not accounted 
for in these calculations. The debris generation occurring at this limiting break size/location is then 
conservatively estimated based on models that are constructed from: 

1. Unrealistic break characteristic assumptions (introducing phenomena that would not be 
expected to occur); and 

2. A conservative expansion of limited test data, necessitated by the wide variety of materials 
and configurations involved and the large uncertainties associated with expansion of small 
scale experiments to PWR conditions. 

The inevitable consequence of the current analysis methodology is an ECCS recirculation 
design that is based (focused) upon an extremely low probability event scenario. 

In response to the large debris generation values resulting from the current approach, licensees 
may find it necessary to proactively reduce the debris generation potential in ways that may be 
detrimental to operation. Utilities may conclude that the only practical way to reduce the debris 
generation source term to a manageable size is to limit break size by installing (reinstalling) guard 
pipes, piping restraints, or other similar devices. The irony of such a change is that the justification for 
removal of such devices from plant designs originally was, in part, the low frequency of the same 
postulated breaks that would now be responsible for their return. The end result of such action is that 
the reactor coolant piping would be less accessible than was the case prior to these modifications. The 
modifications will result in less accessibility inside containment. This, in turn, will result in making 
the performance of some inspections no longer practical, cause other inspections to take longer, and 
result in plant personnel receiving increased doses for routine maintenance and inspection procedures. 

Physical modification of the containment sump screen as a means to address GSI-191 concerns 
will likely be considered by many licensees. While an increase in sump screen area is an appropriate 
and perhaps necessary means to address GSI-191, large increases in sump screen area can have 
unintended consequences and every means should be taken to ensure that the size of the screen is 
appropriate for the issue. The large debris loadings resulting from non-mechanistic modelling of 
breaks could dominate the sizing requirements for containment sumps which, in turn, could lead to 
screen area requirements that lead to modifications that compromise other aspects of plant design and 
operation. Depending on the location of the containment sump, a large increase in screen area could 
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result in an encroachment on reactor coolant piping. This may require additional plant modifications, 
such as the addition of piping restraints to preclude damage to the enlarged sump screen. Large 
increases in sump screen flow areas are also likely to greatly impede access inside containment. This 
would make maintenance and inspection activities more difficult, and potentially impractical. 

3. Description of proposed approach 

As discussed in Section 2, current guidance calls for ECCS and CSS recirculation performance 
to be evaluated for a full range of break sizes across a full range of break locations. These calculations 
are performed to demonstrate that the ECCS can meet requirements for long-term cooling per 
10CFR50.46(b)(5). In order to determine the quantity of debris that is generated as a direct 
consequence of the break it is necessary to specify the characteristics of the postulated break. 

The following section summarises the break characteristic models currently used to meet ECCS 
performance requirement specified in 10CFR50.46. This is followed by a summary of the proposed 
approach for debris generation modelling. 

3.1 Break characteristic models currently used to meet 10CFR50.46 

There are currently two general methods for assigning the break characteristics for use in 
meeting requirements of 10CFR50.46. These are: 

1. Models for in-core thermal hydraulic response and mass/energy release (Appendix K 
models); and 

2. Models for in-core structural response (LOCA forces models). 

Appendix K to 10CFR Part 50 covers required and acceptable features of ECCS evaluation 
models designed to address core response and ECCS cooling performance following a design basis 
LOCA event. These analyses are performed to demonstrate compliance with 10CFR50.46 
performance criteria addressing peak cladding temperature [10CFR50.46(b)(1)], maximum cladding 
oxidation [10CFR50.46(b)(2)] and core coolability5 [10CFR50.46(b)(4)]. Separate analyses are 
performed to demonstrate compliance with the core coolability criterion of 10CFR50.46 by calculating 
the impact of break forces on vessel internals (e.g. fuel assemblies). 

3.1.1 Model for in-core thermal hydraulic response and mass/energy release 

For the purpose of demonstrating compliance with 10CFR50.46(b)(1) and (b)(2) (peak cladding 
temperature and maximum cladding oxidation) and for determining mass and energy release for 
containment response calculations, the postulated break is assumed to be an instantaneous double-
ended opening of a pipe up to and including the largest piping in the reactor coolant system. These 
calculations are deterministic in that they do not take into consideration the frequency of piping 
rupture of a given size. The calculations are also non-mechanistic since no known failure mechanism 
can lead to an instantaneous pipe rupture.6 The assumption of an instantaneous break opening versus a 
                                                      
5.  Appendix K analyses address core coolability primarily from the impact of flow channel blockage 

resulting from clad ballooning. 

6.  For this discussion, instantaneous can be considered to be a break opening time less than ~.01 seconds, 
i.e. the break opening interval necessary to generate a shock wave. 
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more defensible opening time (e.g. 100 milliseconds), has little impact on the associated in-core 
thermal hydraulic calculations. 

The assumption of an instantaneous break opening time does have a significant impact on 
calculations performed for the purpose of meeting other 10CFR50.46 requirements.   

3.1.2 Model for in-core structural response 

Calculations performed to demonstrate compliance with 10CFR50.46(b)(4) (coolable geometry) 
typically incorporate the likelihood of various break locations in accordance with the provisions of 
GDC-4, using “leak before break” analysis techniques. Such consideration allows the elimination from 
the design basis of the dynamic effects of pipe rupture in piping systems so qualified. For piping 
systems that have not been qualified for “LBB exclusion” the analyses determine the effective break 
area resulting from the postulated break and determine, based upon the break forces, existing 
structures and restraints, the piping displacement. The effective break area, taking into account limited 
displacement, results in an effective break area that is, in most cases, significantly less than the full 
pipe diameter. Further, in select applications, the calculations apply a realistic break opening time 
(BOT) based on the consideration of fracture mechanics and dynamic system structural analyses. 
Realistic BOT’s are typically calculated using finite element dynamic analysis methods based on the 
assumption that the crack is developed instantaneously. Although testing and analysis results indicate 
a finite crack propagation time, this is conservatively neglected in the BOT determination. While BOT 
has relatively little effect in the long term on the blowdown transient, a realistic time for the break to 
develop to its full break area can have a considerable effect in the initial stages of the blowdown. 

3.2  Application of current models to local debris generation 

For the purposes of demonstrating compliance with 10CFR50.46(b)(5) (long-term cooling), 
either of the above two approaches for defining break characteristics could be considered, but each has 
noted limitations. The modelling characteristics used for in-core thermal hydraulic analyses  
(e.g. instantaneous break opening time) should not be considered appropriate for use in debris 
generation calculations because they are unrepresentative of break opening behaviour and lead to an 
overly conservative estimation of debris quantities. The methods utilised for in-core structural 
analyses to demonstrate compliance with 10CFR50.46(b)(4) are considered more appropriate for 
debris generation calculations, however, full application is constrained since experiments that have 
been conducted to determine debris generation have typically modelled instantaneous break openings 
using fast opening rupture disks. As such there is little experimental data available to support the 
debris generation that would occur for realistic break opening times. 

The exclusion from consideration of LBB qualified piping that is currently applied in structural 
analyses for 10CFR50.46(b)(4) could be considered in debris generation calculations and was 
proposed by NEI in a letter to NRC dated 4 October 2002 [4]. As of the date this paper is prepared, the 
NRC has not provided a written response to the NEI request to utilise this approach; either accepting it 
as an appropriate method or by identifying the basis for its denial. Therefore, use of LBB piping 
exclusions remains a potential method for use in debris generation calculations. 

However, the uncertainty associated with the schedule for NRC staff response on the proposed 
use of LBB exclusions led to the development of an alternative proposal that incorporates attributes of 
the two currently accepted pipe break characterisation models. 
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3.3  Proposed break characteristic model for debris generation 

The proposed model utilises fracture mechanics considerations to establish a maximum credible 
flaw size in qualified piping. The area associated with this flaw size is then increased by three orders 
of magnitude to determine the break size (area) to be used in debris generation calculations. The 
calculation of the debris quantities generated from these pipe break areas have as a basis a 
conservative estimate of the actual behaviour of the piping material under normal and off-normal 
conditions. 

The proposed model for determining the size of the pipe breach will utilise stable yet detectable 
leakage cracks already calculated for PWR primary coolant piping as a key input parameter. 
Compilations of stable leakage cracks that have been calculated for a number of PWR plants are 
presented in Table 1, along with the crack opening area for each crack. As seen from the listings 
presented in this table, the crack opening areas of the stable leakage cracks are quite small and would 
have little debris generating capability. 

For the purposes of conservatively calculating debris generation for a postulated through-wall 
flaw, the breach area associated with the stable leakage crack is increased by a factor of 1 000. Use of 
a pipe breach area that is three orders of magnitude larger than the calculated area of the associated 
stable leakage crack results in maximum pipe breach areas for use in evaluating debris generation as 
follows: 

� For B&W/Framatome plants 83 inch2  

� For Combustion Engineering plants 40 inch2 

� For Westinghouse plants 40 inch2 

Using a circular hole for the break geometry, the equivalent hole diameters for the break areas 
identified above are calculated as: 

� For B&W/Framatome plants 10.28 inch diameter  

� For Combustion Engineering plants 7.10 inch diameter 

� For Westinghouse plants 7.10 inch diameter  

The geometry of the circular hole is assumed to be in the pipe centered at the midpoint of the 
through-wall crack or flaw. The proposed model could be applied to piping segments for which 
fracture mechanics analysis results are available for determining stable leakage crack areas. Piping 
segments for which the calculation of stable leakage cracks do not exist will assume the full cross 
sectional area of the inside diameter of the pipe for the purposes of debris generation. 

The factor of 1 000 was not chosen arbitrarily. Rather, applying the factor of 1 000 results in a 
hole size that is representative of, and generally larger than, piping attached to the RCS. Thus, the 
factor of 1 000 provides for a conservatively realistic postulated breech in the RCS.  

It is also important to note that the proposed break model is used only for the determination of 
dynamic effects impacting local debris generation. All other phenomena affecting long-term cooling, 
such as break flow, global effects within containment, debris transport, and screen blockage, will 
utilise a full range of break sizes and locations (up to full double-ended guillotine rupture of largest 
pipe). 
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3.4 Comparison of current and proposed break characteristic models 

Table 2 provides a comparison of key attributes of current break modelling used to demonstrate 
compliance to 10CFR50.46 and break modelling proposed for use in calculating debris generation 
potential for postulated breaks. 

4. Technical bases for proposed break characteristic model for debris generation 

Significant testing and analyses have been performed to characterise the behaviour and response 
of flaws that may be present in reactor coolant piping. These efforts have provided a comprehensive 
and realistic basis for defining stable through-wall cracks in large PWR reactor coolant piping. The 
fracture mechanics analytical techniques, applied reactor coolant system loadings, actual material 
properties, and installed leak detection capabilities are discussed below. Combined in a comprehensive 
plant-specific analysis, these techniques demonstrate that a conservatively postulated through-wall 
crack would be large enough to be detected by plant leak detection systems, yet remain stable in the 
full power operating environment, including faulted loading conditions [5, 6, and 7]. 

The following discussion is applicable to and includes both stainless steel and carbon steel 
piping with stainless steel clad. 

4.1 Piping system loading conditions 

The loads resulting from both normal operating conditions and faulted plant conditions are 
applied in the evaluation of both the stability and leakage of through-wall cracks or flaws. These 
conditions conservatively bound other loading conditions on the piping systems of interest. The 
components for normal loads are pressure, dead weight and thermal expansion. 

Normal condition loads are used in the leak rate calculations. For a given length crack or flaw, 
the application of normal operating condition loads determines the flow area and leakage rate. 

For the faulted condition loading, loads associated with the safe shutdown earthquake (SSE) are 
considered in addition to the normal loads. This load combination is used in the demonstration of 
crack stability. 

4.2 Material characterisation 

Material properties for the fracture mechanics evaluations are taken from the certified material 
test reports (CMTRs). Properties are determined both at room temperature and/or at operating 
temperature. Forged and cast stainless steels both typically have high fracture toughness values. 
However, cast stainless steels are subject to thermal aging during service. This thermal aging causes 
an elevation in the yield strength of the material and a degradation of the fracture toughness. Detailed 
fracture toughness testing has been performed for cast stainless steel, the results of which are used to 
establish the end-of-service life (40 or 60 years, as determined by the plant) fracture toughness values 
for specific materials. Detailed fracture toughness testing has also been performed for the low alloy 
ferritic steel pipe materials and associated weldments. 
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4.3 PWR primary loop piping leak rate determination 

The determination of leakage crack size is based on the leak detection capability of the plant 
leak detection systems. 

Leak detection 

Early detection of leakage in components of the reactor coolant pressure boundary (RCPB) 
system is necessary to identify deteriorating or failed components and minimise the release of fission 
products. Regulatory Guide (RG) 1.45 [8] describes acceptable methods to select leakage detection 
systems for the RCPB. 

RG 1.45 specifies that at least three different detection methods should be employed. Plant 
sump level monitoring and airborne particulate radioactivity monitoring are specifically 
recommended. A third method can be either monitoring of condensate flow rate from air coolers or 
monitoring of airborne gaseous activity. 

RG 1.45 also recommends that flow rates from identified and unidentified sources should be 
monitored separately, the former to an accuracy of 10 gpm and the latter to an accuracy of 1 gpm. 
(Note that plants with coolant activity levels sufficiently low as to suggest radiation monitoring will 
not detect leakage with an accuracy of 1 gpm have implemented alternate leakage monitoring 
methods.) Indicators and alarms for leak detection should be provided in the main control room. The 
sensitivity and response time for each leakage detection system used should be such that each is 
capable of detecting 1 gpm or less in one hour. 

All US PWRs meet or exceed the leak detection guidance of the preceding paragraph. Specific 
leak detection capabilities of a plant are identified in its technical specifications. 

Leak rate calculations 

The first step for calculating the leak rates is to determine the crack opening area when the pipe 
containing a postulated through-wall flaw is subjected to normal operating loads. Using the crack 
opening area, leak rate calculations are performed for the two-phase choked flow condition. From the 
actual pipe stress analysis, deadweight, normal 100% power thermal expansion and normal operating 
pressure loads are used in the calculation of the crack opening area and hence the leak rate. All loads 
are combined by the algebraic summation method. 

It is noted that a through-wall circumferential flaw is postulated in the piping that would yield a 
leak rate of 10 gpm. A flaw that results in a 10 gpm flow rate is used to assure a factor of 10 in margin 
between the calculated leak rate compared to the leak detection capability of the plant. 

4.4 Fracture mechanics evaluation 

The stability of a calculated leakage crack or flaw is demonstrated based on material properties 
and faulted applied load conditions. Based on extensive analyses, significant margins on crack 
stability have been demonstrated for the calculated leakage cracks. 
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4.4.1 Local failure mechanism 

The local mechanism of failure is primarily dominated by the crack tip behaviour in terms of 
crack-tip blunting, initiation, extension and finally crack instability. Local stability will be assumed if 
the crack does not initiate at all. It has been accepted [9] that the initiation toughness measured in 
terms of JIC from a J-integral resistance curve is a key material parameter defining crack initiation. If, 
for a given load, the applied J-integral value is shown to be less than the JIC of the material, then the 
crack will not initiate [9]. 

If the initiation criterion is not met, then stability is said to exist when the applied tearing 
modulus value is less than the material tearing modulus value, and the applied J-integral value is less 
than the JMAX value of the material. 

4.4.2 Global failure mechanism 

Determination of the conditions which lead to failure in stainless steel is done with plastic 
fracture methodology because of the large amount of deformation accompanying fracture. One 
accepted method for predicting the failure of ductile material is the plastic instability method, based on 
traditional plastic limit load concepts, but accounting for strain hardening and taking into account the 
presence of a flaw. The flawed pipe is predicted to fail when the remaining net section reaches a stress 
level at which a plastic hinge is formed. The stress level at which this occurs is termed as the flow 
stress. The flow stress is generally taken as the average of the yield and ultimate tensile strength of the 
material at the temperature of interest. This methodology has been shown to be applicable to ductile 
piping through a large number of experiments [9]. 

5. Compliance with applicable regulations 

5.1 Regulatory requirements 

Title 10, Section 50.46 of the Code of Federal Regulations (10CFR50.46) requires that licensees 
design their ECCS systems to meet five criteria, one of which is to provide the capability for long-term 
cooling. Following successful system initiation, the ECCS shall be able to provide cooling for a 
sufficient duration that the core temperature is maintained at an acceptably low value. In addition, the 
ECCS shall be able to continue decay heat removal for the extended period of time required by the 
long-lived radioactivity remaining in the core. The requirements of 10CFR50.46 are in addition to 
the general ECCS cooling performance design requirements found elsewhere in 10CFR Part 50, 
in particular the system safety function requirements in General Design Criterion (GDC) 35 of 
Appendix A to 10CFR Part 50. 

The Containment Spray System is required to meet, in part, GDC 38 and GDC 40 of 
Appendix A to 10CFR Part 50. These criteria specify requirements regarding heat removal from the 
reactor containment following any loss-of-coolant accident and to control fission products that may be 
released into the reactor containment. 

5.2 Current regulatory guidance 

The regulations are not specific as to the manner in which ECCS “capability for long-term 
cooling” is to be demonstrated. The regulations are also not specific as to whether or how debris 
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generation, as a direct result of a design basis LOCA, is to be determined. Methods that are acceptable 
to the NRC for determining whether designs maintain a “capability for long-term cooling” and that 
meet regulatory requirements are currently specified in regulatory guidance. The applicable regulatory 
guide for this purpose is Regulatory Guide 1.82, Water Sources for Long-Term Recirculation Cooling 
Following a Loss-of-Coolant Accident, Revision 3. 

This regulatory guide has undergone significant revision since its initial release in 1974, 
reflecting new insights and results of ongoing research. The revisions also reflect significant changes 
in the regulatory treatment of debris generation. As is discussed in the following section, the 
regulatory treatment has progressed from a fully non-mechanistic treatment (Rev. 0) which only 
accounts for the effect of debris generation on containment sump performance, to a mechanistic 
treatment that allows for consideration of the probability of pipe rupture (Rev. 1), to a mechanistic 
treatment with no allowance for consideration of the probability of pipe rupture (Rev. 2 & Rev. 3). 

A summary of the evolution of regulatory guidance addressing debris generation following a 
LOCA event is given in the following paragraphs. 

Regulatory Guide 1.82, Revision 0 

The containment recirculation portions of the ECCS and CSS for US PWRs were originally 
designed and licensed in conformance with Regulatory Guide 1.82 Revision 07 or predecessor 
guidance. In accordance with guidance contained in Revision 0 to RG 1.82, the “capability for long-
term cooling” was demonstrated in a non-mechanistic fashion, by assuming 50% of the containment 
sump screen area was unavailable for flow due to blockage. 

Debris Generation Guidance 1974-1985 

• Applicable guidance contained in Regulatory Guide 1.82, Revision 0 

• Non-mechanistic treatment 

• Assume accident debris results in 50% blockage of containment sump screen(s) 

Regulatory Guide 1.82, Revision 1 

Regulatory Guide 1.82 was revised in November 1985 as part of the resolution to Unresolved 
Safety Issue (USI) A-43, “Containment Emergency Sump Performance”. The staff concluded at that 
time that no new requirements would be imposed on licensees; however, the staff did recommend that 
Revision 1 to RG 1.82 be used as guidance for the conduct of 10CFR50.59 reviews dealing with 
change out and/or modification of thermal insulation installed on primary coolant system piping and 
components. As part of this revision, guidance was added that called for “evaluation or confirmation 
of …debris effects (e.g. debris transport, interceptor blockage, and head loss) …to ensure that long-
term recirculation cooling can be accomplished”. 

For the purpose of defining break or rupture locations, Revision 1 to RG 1.82 refers the user to 
Standard Review Plan (SRP) Section 3.6.28, which provides guidance for selecting the number, 

                                                      
7.  Regulatory Guide 1.82, Sumps for Emergency Core Cooling and Containment Spray Systems, Revision 0, 

June 1974. 
8.  Standard Review Plan, Section 3.6.2, “Determination of Rupture Locations and Dynamic Effects 

Associated with the Postulated Rupture of Piping”. 
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orientation, and location of postulated ruptures within a containment. SRP 3.6.2 provides instruction 
and guidance to NRC staff reviewers regarding break and crack location criteria and methods of 
analysis for evaluating the dynamic effects associated with postulated breaks and cracks in high- and 
moderate-energy fluid system piping. SRP 3.6.2 is the primary review guidance for ensuring that a 
design meets the requirements of General Design Criterion (GDC) 4. GDC 4 requires that structures, 
systems, and components important to safety shall be designed to accommodate the effects of 
postulated accidents, including appropriate protection against the dynamic and environmental effects 
of postulated pipe ruptures. 

Compliance with GDC 4 requires that nuclear power plant structures, systems, and components 
important to safety be designed to accommodate the effects of, and be compatible with, environmental 
conditions associated with normal operation, maintenance, testing, and postulated accidents, including 
loss-of-coolant accidents. These structures, systems, and components are to be protected against pipe-
whip and discharging fluids. GDC-4 allows such dynamic effects to be excluded from the design basis 
if the probability of pipe rupture is shown to be extremely low. 

For determination of debris generation from identified break locations, RG 1.82 Rev. 1 
identifies a multiple region insulation debris model developed in NUREG-0897 as an acceptable 
model. 

Debris Generation Guidance 1985-1996 
• Applicable guidance contained in Regulatory Guide 1.82, Revision 1 
• Available for use, however, PWR licensees not required to adopt and revise design basis 
• Break locations determined per guidance contained in SRP 3.6.2 and Branch Technical 

Position EMEB 3-1  
• SRP 3.6.2 provides guidance for exclusion of dynamic effects of break locations (in 

accordance with GDC-4) based on low probability of piping rupture under design basis 
conditions 

• Debris generation from identified break locations determined using experimentally 
developed multi-region insulation destruction model 

Regulatory Guide 1.82, Revision 2 

Regulatory Guide 1.82 was revised again in May 1996 to alter the debris blockage evaluation 
guidance for boiling water reactors. While the Introduction section notes that only the section 
concerning boiling water reactors (BWRs) were changed from Revision 1, a noted change to sections 
applicable to PWRs is the deletion of any reference to SRP section 3.6.2 for use in determining break 
locations. 

Debris Generation Guidance 1996-2003 
• Applicable guidance contained in Regulatory Guide 1.82, Revision 2 
• Available for use, however, PWR licensees not required to adopt and revise design basis 
• Removed allowance for consideration of extremely low probability of rupture per SRP 3.6.2, 

BTP EMEB 3-1 and GDC-4 
• No specific guidance on break locations or break sizes for PWRs.  BWR guidance revised to 

include consideration of debris generation from a range of break sizes, locations and other 
properties to provide assurance that most severe postulated LOCAs are calculated 

• Debris generation from identified break locations determined using experimentally 
developed insulation destruction models 
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Regulatory Guide 1.82, Revision 3 

Revision 3 to RG 1.82 was released to provide more detailed guidance for PWRs. Consistent 
with Revision 2, the guidance calls for determination of debris generation for a range of break sizes, 
break locations, and other properties to provide assurance that the most severe postulated LOCAs are 
calculated. 

Debris Generation Guidance 2004 and Forward  
• Proposed revision 3 to Regulatory Guide 1.82 
• Consistent with Revision 2, no allowance for consideration of extremely low probability of 

rupture per SRP 3.6.2, BTP EMEB 3-1 and GDC-4 
• PWR guidance revised to include consideration of debris generation from a range of break 

sizes, locations and other properties to provide assurance that most severe postulated 
LOCAs are calculated 

• Debris generation from identified break locations determined using experimentally 
developed insulation destruction models 

5.3 Precedence for consideration of fracture mechanics in meeting 10CFR50.46 criteria 

5.3.1 GDC-4 – leak before break 

In October 1987, General Design Criterion (GDC) 4 in Appendix A to 10CFR Part 50 was 
revised to allow the use of fracture mechanics to exclude dynamic effects from the design basis of 
qualified piping (i.e. piping for which the probability of rupture can be demonstrated to be extremely 
low). Specifically: 

“Criterion 4 – Environmental and dynamic effects design bases. Structures, systems, and 
components important to safety shall be designed to accommodate the effects of and to be 
compatible with the environmental conditions associated with normal operation, 
maintenance, testing, and postulated accidents, including loss-of-coolant accidents. These 
structures, systems and components shall be appropriately protected against dynamic effects, 
including the effects of missiles, pipe whipping, and discharging fluids, that may result from 
equipment failures and from events and conditions outside the nuclear power unit. However, 
dynamic effects associated with postulated pipe ruptures in nuclear power units may be 
excluded from the design basis when analyses reviewed and approved by the Commission 
demonstrate that the probability of fluid system piping rupture is extremely low under 
conditions consistent with the design basis for the piping.” [Emphasis added] 

The broad-scope rule introduced an acknowledged inconsistency in the design basis by 
excluding the dynamic effects of postulated pipe ruptures while retaining non-mechanistic pipe rupture 
for containments, ECCS, and environmental qualification (EQ) of safety-related electrical and 
mechanical equipment. 

The NRC staff subsequently clarified its intended treatment of the containment, ECCS, and EQ 
in the context of LBB applications in a request for public comment on this issue that was published on 
6 April 1988 (53FR11311). In its clarification the staff stated that the effects resulting from postulated 
pipe breaks can be generally divided into local dynamic effects and global effects. Local dynamic 
effects of a pipe break are uniquely associated with that of a particular pipe break. These specific 
effects are not caused by any other source or even by a postulated pipe break at a different location. 
Examples of local dynamic effects are pipe whip, jet impingement, missiles, local pressurisation, pipe 
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break reaction forces, and decompression waves in the intact portions of that piping or communicating 
piping. Global effects of a pipe break need not be associated with a particular pipe break. Similar 
effects can be caused by failures from such sources as pump seals, leaking valve packings, flanged 
connections, bellows, manways, rupture disks, and ruptures of other piping. Examples of global effects 
are gross pressurisations, temperatures humidity, flooding, loss of fluid inventory, radiation, and 
chemical condition. 

The application of LBB technology eliminates the local dynamic effects of postulated pipe 
breaks from the design basis. However, global effects may still be caused by something other than the 
postulated pipe break. Since the global effects from the postulated pipe break provide a  reasonably 
conservative design envelope, the NRC staff continue to require the consideration of global effects for 
various aspects of the plant design , such as EQ, ECCS, and: the containment. 

5.3.2 Industry proposal to apply GDC-4 exclusion to local debris generation 

In a letter dated 4 October 2002 [4], NEI provided its view on the application of the LBB 
considerations of GDC-4 to local debris generation from a postulated break. NEI presented the 
position that debris generation, as a result of break jet expansion and impingement forces, is a dynamic 
effect uniquely associated with pipe rupture and, as such, is appropriately encompassed within the 
scope of the revised GDC-4. 

In its letter, NEI made the following three points: 

� Debris generation within the zone of influence of a break is a local dynamic effect 
covered by GDC-4 

The dynamic effects addressed by GDC-4 are delineated in the Federal Register notice that 
modified GDC-4 (52FR41288): “Dynamic effects of pipe rupture covered by this rule are missile 
generation, pipe whipping, pipe break reaction forces, jet impingement forces, decompression waves 
within the ruptures pipe and dynamic or nonstatic pressurisation in cavities, sub compartments and 
compartments.” The initial blast wave exiting a DEGB and the ensuing break jet expansion and 
impingement forces are the dominant contributors to debris generation following a LOCA. Other 
contributors are pipe whip and pipe impact. 

� Debris generation does not fall within the scope of functional and performance 
requirements for containment, ECCS and EQ that were retained in the GDC-4 revision 

The rule change acknowledged inconsistencies in the design basis by excluding the dynamic 
effects of postulated pipe ruptures while retaining non-mechanistic pipe rupture for containments, 
ECCS, and environmental qualification (EQ) of safety-related electrical and mechanical equipment. 
As stated in 53FR11311, “…local dynamic effects uniquely associated with pipe rupture may be 
deleted from the design basis of containment systems, structures and boundaries, from the design basis 
of ECCS hardware (such as pumps, valves, accumulators, and instrumentation), and from the design 
bases of safety related electrical and mechanical equipment when leak-before-break is accepted”. 
(Emphasis added). 

� For PWR licensees, LBB considerations for debris generation would be applied as part of a 
revision to design bases that specifically incorporates mechanistic processes addressing 
debris generation, debris transport and debris blockage 
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The ECCS recirculation designs for most PWR plants in the US are based on guidance provided 
in Revision 0 of Regulatory Guide 1.82, Sumps for Emergency Core Cooling and Containment Spray 
Systems. This guidance accounts for screen blockage in a non-mechanistic fashion by assuming that 
one-half of the vertical screen area of the sump is unavailable for recirculation flow.  Since the impact 
of LOCA-generated debris on sump blockage is not addressed directly through this approach, 
consideration of leak-before-break for LOCA-generated debris would have no affect on ECCS designs 
that utilise this guidance in their design bases. Subsequent revisions to Regulatory Guide 1.82 
(Revision 1 – November 1985, Revision 2 – May 1996, Revision 3 – draft) have incorporated a more 
mechanistic process that provides a more phenomenologically accurate, but conservative, estimate of 
the debris blockage that PWR sumps could experience following a LOCA. 

In a letter to NRC dated 30 April 2003 [10], NEI recommended that Revision 3 to Regulatory 
Guide 1.82 incorporate language that acknowledges treatment of debris generation under the LBB 
provisions of GDC-4. Specifically, NEI recommended that the following paragraph be included in the 
proposed revision to Regulatory Guide 1.82: 

“Consistent with the requirements of 10CFR50.46, debris generation should be calculated 
for a number of postulated LOCAs of different sizes, locations, and other properties 
sufficient to provide assurance that the most severe postulated LOCAs are addressed. In 
accordance with GDC-4, dynamic effects associated with postulated pipe ruptures (including 
local debris generation) may be excluded from the design basis when analyses reviewed and 
approved by the Commission demonstrate that the probability of fluid system piping rupture 
is extremely low under conditions consistent with the design basis for the piping.” 

5.3.3 Status of NRC response to NEI proposal 

As of this writing, NRC has not issued a written response to the NEI positions on use of GDC-4 
to exclude local debris generation as a local dynamic effect for qualified piping. NRC staff has stated 
during public meetings that they believe that the requested exclusion of local debris generation is not 
in accordance with the requirements of 10CFR50.46. Specifically, 10CFR50.46(c)(1) which defines 
LOCAs as “hypothetical accidents that would result from the loss of reactor coolant, at a rate in 
excess of the capability of the reactor coolant makeup system, from breaks in pipes in the reactor 
coolant pressure boundary up to and including a break equivalent in size to the double-ended 
rupture of the largest pipe in the reactor coolant system [emphasis added].” The preliminary staff 
position appears to preclude the use of GDC-4 in analyses performed to meet the “long-term cooling” 
requirements of 10CFR50.46 criteria. Although, it is noted that NRC has reviewed and approved 
break-size exclusions allowed by GDC-4 in analyses performed to meet the “coolable geometry” 
criterion of 10CFR50.46. 

5.3.4 Use of fracture mechanics to meet 10CFR50.46 “coolable geometry” criterion 

Subsection (b) of 10CFR50.46 specifies 5 criteria that must be met by the ECCS. They are: 

1. Peak cladding temperature. The calculated maximum fuel element cladding temperature 
shall not exceed 2 200°F. 

2. Maximum cladding oxidation. The calculated total oxidation of the cladding shall nowhere 
exceed 0.17 times the total cladding thickness before oxidation. 

3. Maximum hydrogen generation. The calculated total amount of hydrogen generated from 
the chemical reaction of the cladding with water or steam shall not exceed 0.01 times the 
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hypothetical amount that would be generated if all of the metal in the cladding cylinders 
surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react. 

4. Coolable geometry. Calculated changes in core geometry shall be such that the core remains 
amenable to cooling. 

5. Long-term cooling. After any calculated successful initial operation of the ECCS, the 
calculated core temperature shall be maintained at an acceptably low value and decay heat 
shall be removed for the extended period of time required by the long-lived radioactivity 
remaining in the core. 

The first three criteria (peak cladding temperature, maximum cladding oxidation and maximum 
hydrogen generation) are met through the use of approved ECCS models that meet requirements of 
10CFR50.46(a). These models meet either the requirements of Appendix K to 10 CFR50.46 or make 
use of NRC approved best estimate models. These “core response” models model the full range of 
break sizes (up to and including full double-ended guillotine break of the largest pipe in the reactor 
coolant system) in accordance with 10CFR50.46(c)(1). The assumptions on break opening time range 
from “instantaneous” (a requirement for all Appendix K models) to 1 millisecond (for some NRC 
approved Best Estimate LOCA models). Fracture mechanics considerations are not taken into account 
in either the Appendix K models or Best-estimate models. 

The fourth criterion (coolable geometry) is demonstrated through the performance of dynamic 
analyses of the assembled reactor vessel, internals, and fuel and is performed for a range of postulated 
LOCAs in accordance with applicable regulatory guidance. The results of these analyses provide 
assurance that the forces resulting from the postulated LOCAs will not result in fuel assembly 
deformation to an extent that would lead to a loss of “coolable geometry.” 

For most, if not all PWRs, the range of LOCAs that are considered is limited through 
application of leak before break considerations, supported by fracture mechanics. Using NRC 
approved guidance, forces resulting from breaks in LBB qualified piping are not included in the set of 
analyses performed to demonstrate compliance to 10CFR50.46(b)(4). 

The proposed use of fracture mechanics to demonstrate compliance with the fifth criterion 
(long-term cooling) is significantly more conservative than the NRC approved methods used to 
demonstrate “coolable geometry”. In the modelling that will be used to demonstrate long-term cooling 
following a postulated LOCA, a full range of break sizes (up to full double-ended guillotine rupture of 
largest pipe) will continue to be addressed for all relevant phenomena with the exception of the 
dynamic effects which impact local debris generation. All other phenomena affecting long term 
cooling (e.g. break flow, global effects within containment, debris transport, screen blockage) will 
model a full range of break sizes and locations. 

6. Retained safety margins 

The determination of debris generation that results as a direct consequence of the local dynamic 
effects of a postulated pipe break is a single step in the larger effort necessary to assess the 
recirculation performance of the ECCS and CSS following a design basis LOCA. 

In order to calculate plant response to a postulated pipe break event and the potential for 
significant blockage of the containment sump screens, it is necessary to take into account a wide range 
of phenomena and processes. Figure 1 illustrates some of the phenomena and processes that must be 
considered. These phenomena and processes are highly dependent upon plant design and operation as 
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well as the specifics of the postulated LOCA event. The complexity and multivariate nature of the 
event progression, coupled with the absence of a comprehensive database addressing the full range of 
encountered phenomena inevitably leads to a calculation process that accounts for the resulting 
uncertainties in a conservative manner. 

As noted before, typically the analyses investigating ECCS operation during the recirculation 
phase divide the process into three separate phases: (1) debris generation; (2) debris transport; and 
(3) debris accumulation and head loss. Each phase of the calculation process, while interdependent, 
involves its own set of phenomena and uncertainties. Known limitations in the knowledge base of 
these phenomena and associated calculation methods are typically accounted for in a bounding fashion 
during each phase of the process. Thus, it is important to note that the more realistic treatment of the 
debris generation phase using the break characteristics model described in this paper, neither 
eliminates nor alters the conservative treatment of other phenomena and processes. As such, the 
overall results from the analyses will retain a significant degree of conservatism. 

7. Summary 

This paper outlines a method of using fracture mechanics analysis techniques to define pipe 
break areas for the evaluation of consequential debris generation for post-accident containment sump 
performance evaluation. The proposed break characterisation model is based on stable leakage crack 
sizes that generate detectable leaks and have already been calculated for PWR primary coolant piping 
and, in some cases, surge line piping. The debris generated from the proposed break characteristic 
model areas are meaningful with respect to sump performance and are based on the actual behaviour 
of the piping material under normal and off-normal conditions. 

For added margin, the proposed break characteristic model incorporates a factor of 1 000 
applied to the flow area of a stable through-wall flaw that produces a 10 gpm leakage rate. The 
geometry of the breach will be taken to be a circular hole in the pipe of interest. 

Fracture mechanics analysis techniques have been used successfully, in conjunction with plant 
leak detection systems, to determine the size of stable cracks for PWR primary loop piping. The 
leakage flow of these stable cracks has been evaluated to be 10 gpm, or a factor of 10 above the leak 
detection capability of PWR plants. 

It is therefore concluded that the proposed break characteristic model based on calculated stable 
leakage cracks using proven fracture mechanics techniques provides an acceptable, conservative, yet 
realistic approach for the evaluation of containment sump performance. 
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Table 1.  Stable leakage crack sizes for PWR primary loop piping 

Westinghouse designed plants 

Pipe OD   
(in) 

Pipe wall thickness 
(in) 

Stable crack 
length1 

(in) 

Crack opening 
area 
(in2) 

32.12-37.75 2.21-3.27 2.5-8.55 0.030-0.040 
 

CE designed plants 

Case (Type of rack evaluated) Pipe wall thickness 
(in) 

Stable crack 
length1 

(in) 

Crack opening 
area 
(in2) 

Circumferential crack in pump 
discharge 

3.0 7.0 0.040 

Circumferential crack in hot leg 3.75 7.0 0.040 

Axial slot in pump suction elbow 3.0 4.0 0.040 

Circumferential crack in pump 
suction elbow 

3.0 11.0 0.040 

Circumferential crack in pump 
discharge 

2.5 7.0 0.040 

 

B&W designed plants 

Applicable plants Piping segment 
Stable crack 

length1 
(in) 

Crack opening 
area 
(in2) 

Cold leg, straight 9.20 0.075 

Cold leg, elbow 9.00 0.075 

Hot leg, straight 8.00 0.068 

Plants A, B, C, D, E, and F 

Hot leg, elbow 10.80 0.083 

Cold leg, straight 9.39 0.065 

Cold leg, elbow 9.41 0.074 

Hot leg, straight 11.39 0.074 

Plant G 

Hot leg, elbow 12.63 0.083 

1. Stable crack length is based on a leak rate of 10 gpm. 
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Table 2.  Comparison of break characteristic models for debris generation 

Break 
characteristic 

models 

(A) 
In-core T/H, 
M&E model 

(B) 
In-core structural 

response model 

(C) 
LBB application 

proposed in  
10 April 2002 NEI letter 

(D) 
Fracture 

mechanics 
approach 

Current 
application 

Used to support 
analyses that 
demonstrate 
compliance to 
10CFR50.46(b)(1) 
and 10.46(b)(2) 

Used to support 
analyses that 
demonstrate 
compliance to 
10CFR50.46(b)(4) 

Proposed for use in 
analyses that demonstrate 
compliance to 
10CFR50.46(b)(5) 

Proposed for use 
in analyses that 
demonstrate 
compliance to 
10CFR50.46(b)(5) 

Break opening 
time 

Instantaneous Varies by vendor.  
Ranges from 
instantaneous to 
value determined by 
fracture mechanics 
evaluation. 

Instantaneous Instantaneous 

Break locations  All high-energy 
RCS piping (no 
exclusions) 

All non-LBB 
qualified piping 
(LBB piping 
excluded per  
GDC-4) 

All non-LBB qualified 
piping (debris generation 
from LBB piping 
excluded per GDC-4) 

All high-energy 
RCS piping (no 
exclusions) 

Break size  Up to full double-
ended guillotine 

Up to full double-
ended guillotine 

Up to full double-ended 
guillotine 

Break size for 
debris generation 
determined using 
fracture mechanic 

Similar 
applications 

In-core T/H 
analyses performed 
to demonstrate 
compliance with 
10CFR50.46(b)(1) 
and (2) 

Structural 
calculations 
performed to 
demonstrate 
compliance with 
10CFR50.46(b)(4) 

Similar to In-core 
Structural Response model 
but conservatively retains 
modelling of 
instantaneous opening 
time for consistency with 
debris generation 
experimental database. 

Similar to In-core 
T/H analysis 
model with 
exception of 
fracture 
mechanics based 
break size 
modelling in lieu 
of double-ended 
break 

 



 

 328 

Figure 1.  PWR large break LOCA progression for a large dry containment [1] 
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