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Chapter 5 
Causal inference for ex-post evaluation of transport interventions 

Daniel Graham - Imperial College, London, United Kingdom. 

 

This chapter reviews methods that seek to draw causal inference from non-experimental data 
and shows how they can be applied to undertake ex-post evaluation of transport interventions. In 
particular, the chapter discusses the underlying principles of techniques for treatment effect 
estimation with non-randomly assigned treatments. The aim of these techniques is to quantify 
changes that have occurred due to explicit intervention (or "treatment").  

The chapter argues that transport interventions are typically characterised by non-random 
assignment and that the key issues for successful ex-post evaluation involve identifying and 
adjusting for confounding factors. In contrast to conventional approaches for ex-ante appraisal, a 
major advantage of the statistical causal methods is that they can be applied without making strong 
a priori theoretical assumptions.  

The chapter provides empirical examples of the use of causal techniques to evaluate road 
network capacity expansions in US cities and high-speed rail investments in Spain. 
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Introduction 

Ex-ante transport appraisal has well-established theoretical and empirical roots in the consumer 
surplus-based calculation of Cost Benefit Analysis (CBA). Recent work on Wider Economic Benefits 
(WEBs) has extended "standard" CBA to incorporate some key externalities and forms of imperfect 
competition, again based on clearly set-out theoretical and empirical evidence. CBA provides a familiar 
and well-understood approach that is routinely used by civil servants, transport professionals and 
academics. 

Considerably less attention has been paid to ex-post transport appraisal, both in theory and in 
practice. This is presumably because we are generally more interested in predicting how our future 
investments will fare than in assessing how well we have allocated resources in the past. Yet if we want 
to obtain a solid understanding of the impacts that transport interventions will have, a good benchmark 
can be established by studying previous interventions and how they performed according to some 
defined metrics of interest. 

One way of doing this is to simply re-run the ex-ante CBA calculations some time after the project 
has been completed using observed rather than predicted values. This can provide useful information 
both on the impacts of the project itself and on how well ex-ante CBA was able to predict the benefits 
and costs of the scheme. Such calculations are, however, still generated within the theoretical framework 
of CBA, which makes a number of quite restrictive simplifying assumptions. An alternative approach is 
to apply statistical models to data observed before and after transport interventions and attempt to 
estimate impacts that were caused by the intervention. Such statistical approaches, which we refer to as 
methods for causal inference, rely more on empirical methods than economic theory, but have their own 
assumptions and properties that must be met in order to generate valid casual inference. 

In this chapter we review statistical approaches that are routinely used across a range of scientific 
disciplines to infer cause-effect relationships from observational data. We argue that a causal inference 
framework is highly suitable for ex-post appraisal because it is specifically designed to estimate effects 
that arise when "treatments" are non-randomly assigned, as is the case with most transport interventions. 
The key consequence of non-random assignment is that the effect of the treatment is "confounded", 
implying that units in receipt of the treatment (or some particular dose of the treatment) may differ in 
systematic ways from units with an alternative treatment status. The objective of causal analysis is to 
estimate the average effect of the treatment (or intervention), net of confounding, or in other words, to 
uncover the marginal causal effect. We refer to this as a treatment effect estimation problem and it is 
within this context that we discuss possible methods for ex-post appraisal. 

The chapter is structured as follows. Firstly, it discusses ex-post appraisal as a treatment effect 
estimation problem within the potential outcomes framework for causal inference. It outlines the 
implication of non-random treatment assignment and the problem of confounding, and then introduces 
the key assumptions required for valid causal inference. Next, it describes strategies for consistent 
treatment effect estimation. It discusses identification of causal effects under "ignorability" via covariate 
adjustment, propensity score adjustment and doubly-robust methods. It then reviews two approaches that 
are commonly used when ignorability is not assumed to hold. Lastly, it provides two empirical examples 
of the use of causal techniques for ex-post evaluation: one which evaluates the impacts of urban road 
network capacity expansions in the US and one which considers the regional economic impacts of High-
Speed Rail investments in Spain. Conclusions are then drawn in the final section. 
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Ex-post appraisal as a treatment effect estimation problem 

Our emphasis on causality in this chapter arises from the conviction that transport policy is 
fundamentally concerned with cause-effect relationships. In the United Kingdom for example, the 
following concerns have been highly influential in decision making in recent years: 

• What effect will fuel taxation have on transport emissions? 

• By how much will traffic volumes reduce under congestion charging? 

• How will travel demands change as standards of living rise? 

• Will investment in transport infrastructure boost the productivity of the economy? 

• How will investment options affect network performance? 

Each of these issues involves a cause-effect relationship and the underlying goal of policy is to 
attempt to shape future outcomes via public intervention. For decision makers the question of interest is: 
what impact, or outcome, will proposed interventions have? 

Ex-post evaluation can help answer this question. By applying statistical models to historic data we 
can attempt to capture the key relationships of interest and can seek to evaluate the effect of past 
interventions on defined outcomes. There are, however, two key problems we face in obtaining a causal 
interpretation from observed data. First, is that we observe only what has actually occurred, not what 
would have taken place had we intervened in a different way. Second, the interventions we make are 
rarely randomly assigned and non-random assignment obscures cause-effect relationships. Taken 
together, these two issues in effect mean that we do not have experimental evidence upon which to base 
policy decisions. 

In this section we outline the potential outcomes framework for causal inference which can be used 
to obtain a causal interpretation of observational data in the absence of experimental conditions. We 
discuss the defining characteristics of this approach and demonstrate how it could be used to infer cause-
effect relationships for transport interventions. 

Challenges in estimating the causal effect of treatments on outcomes  

There are three key components that require attention in analysing cause-effect relationships from 
observed data: the intervention (or treatment) to be studied; the outcome of interest; and any relevant 
characteristics of the units of observation. For ex-post analysis we are fundamentally interested in the 
effect that a transport intervention (or some set of interventions) has on an outcome. We may wish to 
know what the outcome would have been had the intervention not been applied, or if some different 
intervention had been applied. 

Relevant outcomes of interest could relate to traffic conditions (e.g. speeds, flow, safety, 
congestion), economic characteristics (e.g. output, productivity, growth), mode share, environmental 
consequences, social concerns, and so on. 

For analytical purposes, an intervention in the transport system can be viewed as an observed 
realisation of random variables whose manipulation produces different outcomes. We refer to such 
random variables as "treatments", defined in the broadest sense to encompass any "regime" which can be 
manipulated to produce some effect. For instance, a treatment could involve the construction of a new 
link, the imposition of speed limits, changes in transport prices, changes in frequency or quality of 
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service, allocation of subsidies, and so on. Treatment variables can be binary, multivalued or continuous. 
Table 5.1 gives relevant examples of transport interventions classified as treatment variables. 

Table 5.1.  Transport interventions classified as treatment variables 

Binary Multi-valued Continuous 
Tolled / untolled route Frequency of service Network capacity 
Presence of speed camera Speed limit Length of segregated route 
20 mph zone designation Cars per train Density of intersections 
Peak / off-peak No. of O-D routes Accessibility 
Pedestrianised / unpedestrianised No. of network nodes Tax / subsidy rates 

We are interested in the effect of the treatment on the outcome, but we also recognise that the units 
under study will likely not have homogeneous characteristics, and these may be relevant to the 
fundamental relationship of interest. Depending on the purpose of the analysis, and the available data, 
units could comprise particular transport schemes, network links, people, households, firms, 
geographical zones, cities etc. 

We seek to estimate causal effects using data to represent these three components. We define 
zi = (yi, di, xi), i = 1, ..., n, as a random vector of observed data where for the i-th unit of observation yi 
denotes an outcome (or response), di the treatment (or exposure) received, and xi a vector of 
pre-treatment covariates. As mentioned previously, the treatment can be binary (i.e. D ∈ {0, 1}); 
multivalued, in which dose d can take values in m categories D ≡ (d0, d1, ..., dm); or continuous with dose 
d taking values in D ⊆ R. 

We want to estimate the effect that treatments have on outcomes. To do so we will draw on the 
potential outcomes framework for causal inference, which was first put forward for binary treatments in a 
series of papers in the 1970s by Rubin (e.g. Rubin 1973a,b, 1974, 1977, 1978), although Rubin 
acknowledges precursors to his approach in earlier works by Fisher (1935) and Neyman (1923). The 
potential outcomes framework defines the conditions under which we can estimate causal effects from 
observed data. These are two fundamental issues that shape the potential outcome approach. 

Missing data 

Ideally, we would calculate the effect of each treatment on an individual (or unit-by-unit) basis. 
Thus, for unit i and binary treatment D ∈ {0, 1} we can define two potential outcomes: Yi(0) if Di = 0, 
and Yi(1) if Di = 1. The individual causal effect (ICE) of the treatment is then defined as: 

τi = [Yi(1) − Yi(0)]. 

For multivalued or continuous treatment we can define a potential outcome Yi(d) associated with 
each dose of treatment d, with Yi = {Yi(d) : d ∈ D} denoting the full set of potential outcomes. The 
relevant ICEs would then be: 

τi = [Yi(d) − Yi(0)], 
or the difference between the outcome, given assignment to dose d and assignment to no treatment. 

A key problem for causal inference, however, is that the data available for estimation reveal only 
actual, not potential outcomes. For a binary treatment we observe:  
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Yi = Yi(1) I1(Di) + Yi(0)[1 − I1(Di)], 

where I1(Di) is the indicator function for receiving the treatment, but we do not observe the joint 
density, f(Yi(0), Yi(1)), since the two outcomes never occur together. For multivalued or continuous 
treatments we observe only Yi(Di), and outcomes at all other levels, d ≠ Di, are unobserved and we refer 
to these as counterfactual outcomes. 

Thus, the problem we face is that the observed data do not provide enough information to evaluate 
ICEs because we do not observe the potential outcomes arising from treatment allocations that are 
contrary to fact. Holland (1986) refers to this as a fundamental identification problem of causal inference. 
A key insight of the potential outcomes approach is that if we focus on estimating average causal effects, 
rather than ICEs, then we do not have to observe all potential outcomes. 

Average casual estimands of interest include Average Potential Outcomes (APOs) and Average 
Treatment Effects (ATEs). For binary treatments the APOs are: 

µ(1) = E[Yi(1)] and µ(0) = E[Yi(0)], 

and the ATE is defined as: 

τ (1) = µ(1) − µ(0). 

For continuous and multi-valued treatments the APO under treatment level d is denoted: 

µ(d) = E[Yi(d)], 

and the ATE is: 

τ (d) = µ(d) − µ(0). 

Other causal estimands can include ATEs on the treated, quantile effects, ATEs for a variety of 
sub-populations, ATEs conditional on covariates and causal odds and risk ratios. In this chapter the 
primary concern is with APOs and ATEs as defined above. 

Non-random assignment and the problem of confounding 

The conditions under which we can use the observed data to estimate APOs and ATEs depend 
crucially on whether the treatment is assigned randomly or not. Figure 5.1 below shows a graphical 
comparison of randomised and non-randomisation treatment assignments. 
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Figure 5.1.  Directed acyclic graph of observational data with randomisation and non-randomisation of 
treatment assignment 

 

Under a randomised assignment, unit characteristics X have no influence on the treatment received 
(i.e. on D). Consequently, potential outcomes are unconditionally independent of the treatment 
assignment mechanism. For binary treatments randomization implies: 

Yi(0), Yi(1)) ⊥ I1(Di) 

and for multivalued or continuous treatments: 

Yi(d) ⊥ Id(Di) for all d ∈ D, 

where Id(Di) is the indicator function for receiving dose d of the treatment. Under a random assignment 
there are no systematic differences in characteristics between treated or controlled units, or in the case of 
multivalued and continuous treatments, between units receiving different doses of the treatment. 
Consequently, we can treat the unobserved potential outcomes much like data that are missing at random 
and consistent estimators of ATEs for binary, and multivalued or continuous treatments can then be 
formed as: 

̂(1) = ∑ ∙ ( )∑ ( ) − ∑ ∙ (1 − ( ))∑(1 − ( ))                                              (1) 

and: 

̂( ) = ∑ ∙ ( )∑ ( ) − ∑ ∙ ( )∑ ( )                                                    (2) 

Under non-randomisation, however, allocation of the treatment depends on a set of covariates X that 
are themselves important in determining outcome Y. Thus, some part of the association between the 
treatment and the outcome could be attributed to X rather than D. Under these circumstances, we refer to 
X as confounders and note that simple comparisons of mean responses across different treatment groups 
(as in equations 1 and 2) will not in general reveal a "causal" effect because mean outcomes across 
treated and control units will differ regardless of treatment status. 
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Identification of causal effects via the potential outcomes framework 

While non-random assignment has consequences for causal estimation, consistent estimates of 
APOs and ATEs can still be obtained under the potential outcome framework. However, adjustment for 
confounding has to be made. In this subsection of the chapter, we define the conditions under which 
causal estimates can be identified in the presence of confounding. 

There are three key assumptions required for valid APO and ATE estimation in the presence of 
confounding within the potential outcomes framework. These are as follows. 

• Conditional independence: the potential outcomes for unit i should be conditionally 
independent of the treatment assignment, given a (sufficient) set of observed covariates Xi. For 
binary treatments the assumption requires that: 

Yi(0), Yi(1)) ⊥ I1(Di)|Xi, (3)

and for multivalued or continuous treatments, Imbens (2000) and Hirano and Imbens (2004) 
introduce the concept of weak conditional independence, which can be stated as: 

Yi(d) ⊥ Id(Di)|Xi for all d ∈ D. (4)

The key difference between the binary and non-binary assumptions is that, in the latter, 
conditional independence is required to hold for each value of the treatment (i.e. pairwise), but 
not joint independence of all potential outcomes. 

The conditional independence assumptions essentially require that, conditional on some set of 
pre-treatment covariates, assignment to treatment does not depend on the outcome. If Xi is 
sufficient for this to hold, then we can in effect mimic, for observational data, the assignment 
that would occur in a randomised control trial in which the treatment is allocated independently 
of pre-treatment characteristics. 

• Common support – the support of the conditional distribution of Xi, given a particular 
treatment status, should overlap with that of Xi given any other treatment status. For binary 
treatments, this requires that the probability of assignment to the treatment lies strictly between 
zero and one:  

0 < Pr(I1(Di) = 1|Xi = x) < 1, ∀ x. (5)

For multivalued or continuous treatments we require common support by treatment status in the 
covariate distributions within some region of dose C ⊆ D. A sufficient condition is that for any 
subset of C, say A ⊆ C, 

Pr(Di ∈ A|Xi = x) > 0, ∀ x (6)

The intuition behind the common support, or overlap, assumption is that if some 
sub-populations observed in Xi have zero probability of receiving (or not receiving) a 
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treatment, then it does not make sense in these cases to talk of a treatment effect since the 
counterfactual does not exist in the observed data. 

• Stable unit treatment values: the relationship between observed and potential outcomes must 
comply with the Stable Unit Treatment Value Assumption (SUTVA) (e.g. Rubin 1978, 1980, 
1986, 1990), which requires that the observed response under a given treatment allocation is 
equivalent to the potential response under that treatment allocation. For binary treatments we 
require that:  

Yi = I1(Di)Yi(1) + (1 − I1(Di))Yi(0) (7)

for all i = 1, ..., N. For multivalued or continuous treatments we require: 

Yi ≡ Id(Di)Yi(d) (8)

for all d ∈ D, for all Yi(d) ∈ Yi, and for i = 1, ..., N. 

The SUTVA requires that the outcome for each unit be independent of the treatment status of other 
units or, in other words, there should be no interference in treatment effects across units (Cox, 1958). It 
also implies that there are no different versions of the treatment. The no-interference assumption is 
generally satisfied when the units are physically distinct and have no means of contact. Violations of the 
assumption can occur when proximity of units allows for contact and this presents a particular concern 
for transport applications. 

The three assumptions defined above, which are together referred to by Rosenbaum and Rubin 
(1983) as strong ignorability, allow for identifiability of causal effects from observational data. In the 
case of binary treatments the ATE can be derived as: 

τ =Ei(Yi(1) − Yi(0)) = EX [Ei(Yi(1)|Xi = x) − Ei(Yi(0)|Xi = x)]     (9a) 

=EX [Ei(Yi(1)|Xi = x, I1(Di) = 1) − Ei(Yi(0)|Xi = x, I1(Di) = 0)]    (9b) 

=EX [Ei(Yi|Xi = x, I1(Di) = 1) − Ei(Yi|Xi = x, I1(Di) = 0)] .        (9c) 

Conditional independence justifies the equality of (9a) and (9b), the SUTVA allows the substitution 
of observed for potential outcomes to give (9c), and overlap ensures that the population ATE in (9c) is 
estimable since there are units in both the treated and untreated groups. Note that the ATE is defined as 
an expectation over covariates X. If we do not take this expectation, but instead simply use the integrand, 
we obtain an estimate of the causal effect of D within strata of X. In other words, we get the conditional 
treatment effect, that is, the average treatment effect for units with characteristics X = x. By integrating X 
out of this distribution we get the average causal intervention distribution. 

For continuous or multivalued treatments, the APO under a given dose D = d, µ(d) = E[Yi(d)], or 
the dose-response function, can be derived as: 

E[Yi(d)] = EX [E(Yi(d)|Xi )] = EX [E(Yi(d)|Id(Di), Xi )] = EX [E(Yi|Id(Di), Xi)] ,   (10) 
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where the second equality follows from conditional independence, the third from the SUTVA, and the 
overlap assumption ensures that the APO is estimable since there are comparable units across treatment 
levels. 

Causal methods for treatment effect estimation 

The literature on methods for causal estimation is vast and growing at a rapid rate. Consequently, a 
truly comprehensive review of the field is outside the scope of this chapter and, in fact, would make little 
contribution since excellent up-to-date reviews already exist, such as those by Hernan and Robins 
(2012), Imbens and Wooldridge (2009), Tsiatis (2006) and van der Laan and Robins (2003). Instead, we 
outline the general principles under which the construction of estimators proceeds. We do so first for 
methods that assume ignorability and then we consider two popular approaches that are used when 
ignorability is thought to be violated. 

Treatment effect estimation under ignorability 

Using the notation of Tsiatis and Davidian (2007), we define joint densities of the observed data of 
the form: 

fZ (z) = fY|D,X (y|d, x)fD|X (d|x)fX(x). 

When ignorability is assumed to hold, estimation of APOs and ATEs generally proceeds in one of 
the following ways: 

• Direct covariate adjustment: leave fD|X(d|x) and fX(x) unspecified and posit a 
model for E[Yi|Di, Xi]; the expectation of the conditional density of the response 
given treatment and covariates. This is typically achieved via an outcome 
regression (OR) model such as a Generalised Linear Model (GLM), a Generalised 
Linear Mixed Model (GLMM), a Generalised Additive Mixed Model (GAMM), 
or other spline-based approach. ATEs can be estimated directly from these OR 
models. This regression approach is commonly used in transport analyses. 

• Propensity Score adjustment: leave fY|X(y|x) and fX(x) unspecified but assume a 
model for fD|X(d|x) and use these to form Propensity Scores (PS), which measure 
the probability of assignment to treatment, given the set of observed pre-treatment 
covariates. An important result, due to Rosenbaum and Rubin (1983), is that the 
conditional independence assumption (i.e. equations 3 and 4) can be restated by 
replacing the covariate vector Xi with the scalar PS. Rosenbaum and Rubin (1983) 
proved this result in the case of binary treatments and Imbens (2000) and Hirano 
and Imbens (2004) generalise the PS to cover the case of multivalued and 
continuous treatments. 

The PS are to be used to form a number of different non-parametric and semi-
parametric estimators, via weighting, matching, stratification, blocking and 
regression (for details, see Imbens and Wooldridge, 2009). A key advantage in 
using the PS is that it avoids the need to condition on a potentially high 
dimensional covariate vector and it is this dimension-reducing property that 
allows for effective implementation of flexible estimators .Another advantage of 
the PS is that it is highly effective in isolating the region of common support, a 
task that is difficult using multiple covariates (for discussion, see Joffe and 
Rosenbaum, 1999). 
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• Doubly-Robust estimation: leave f(x) unspecified but assume both an OR model 
and a PS model and form an estimator that combines both models. This is usually 
achieved by weighting or augmenting the OR model with covariates derived by 
inverting the PS. The key feature of doubly-robust estimators is that APO and 
ATE estimates are consistent and asymptotically normal when either the OR or 
the PS model are correctly specified, but we do not require both models to be 
correct (e.g. Robins, 2000; Robins et al., 2000; Robins and Rotnitzky, 2001; van 
der Laan and Robins, 2003; Lunceford and Davidian, 2004; Bang and Robins, 
2005; Kang and Schafer, 2007). The rationale for doubly-robust estimation is that 
the analyst effectively has two chances at getting the model specification right. 

Estimation given a non-ignorable treatment assignment  

The validity of the estimation approaches discussed in the previous subsection requires us to 
maintain that ignorability holds. When this assumption is no longer tenable we have to look at other 
approaches. In this subsection we review two popular estimators that are used when ignorability is not 
assumed: differences-in-differences and instrumental variables. 

Differences-in-differences 

 A common problem in identifying causal effects is that there may be unobserved differences 
between the treated and untreated units which affect potential outcomes and are also influential in 
treatment assignment. In addition, we may suspect that temporal trends affect the outcome variable due 
to events that are unrelated to the treatment.  

The differences-in-differences (DID) estimator addresses such potential sources of bias by using 
information for both treated and control groups in both pre- and post-treatment periods. The DID 
estimator approximates:  

 τDID = {E [Yi(1)|D = 1] − E [Yi(1)|D = 0]}−{E [Yi(0)|D = 1] − E [Yi(0)|D = 0]}    
 (11) 

The "double-differencing" of the DID estimator removes two potential sources of bias. Firstly, it 
eliminates biases in second period comparisons between the treated and control groups that could arise 
from time-invariant characteristics. Secondly, it corrects for time-varying biases in comparisons over 
time for the treated group that could be attributable to time trends unrelated to the treatment. 

It is important to note two potential limitations with the DID approach. Firstly, it relies on the strong 
identifying assumption that the average outcomes for the treated and control groups would have followed 
parallel paths over time in the absence of the treatment. 

Secondly, the model is sensitive to error specification and, in particular, it has been shown that the 
existence of correlation within groups or over time periods can adversely affect the performance of the 
DID estimator (Bertrand et al., 2004). 

Instrumental Variables (IV) 

The IV estimator is well known and widely used and for that reason we do not provide an extensive 
review here. The key principles of IV estimation are:  
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• Find a set of instruments which are exogenous and highly correlated with the 
covariates;  

• Use the instruments to enforce orthogonality between the error term and an 
instrument transformed design matrix. 

The relationships assumed in IV estimation are shown graphically below in the context of the linear 
regression model y = Xβ + u with instrument matrix Z.  

Figure 5.2. Relationships in instrumental variables estimation 

 
The defining characteristics of the IV model are that: changes in z are associated with changes in x, 

but do not lead to changes in y other than through x; z is causally associated with x but definitely not 
with u; z would not be found in the regression model for y. 

A common method used to obtain IV estimates is two-stage Least Squares (2SLS): 

• Regress each column of X on the instrument matrix Z. 

• Regress y on the predicted values from the first stage. 

IV can be used to establish causal effects under a non-ignorable treatment assignment and is 
particularly useful when endogeneity via bi-directionality is present. However, it is crucial that the two 
key assumptions of exogeneity and relevance are met, and in practice such instruments can be hard to 
find. When instruments are only weakly correlated with the endogenous regressors, or when the 
instruments themselves are correlated with the error term, IV estimation can produce biased and 
inconsistent estimates. This problem is further confounded by the fact that the available diagnostic 
statistics do not provide a foolproof means for detecting an inadequate instrument specification. To quote 
Hahn and Hausman (2003), even using standard tests for instrument validity, “the researcher may 
estimate ‘bad results’ and not be aware of the outcome”. In addition, it is worth noting that the 
IV estimator can be much less efficient than OLS. 

Applications 

In this section we describe two applications of the treatment effect approach for ex-post evaluation 
of transport interventions. The first relates to an ex-post evaluation of urban road capacity expansions in 
the US. The objective is to estimate ATEs from road capacity expansion in relation to induced traffic 
demand, traffic densities and productivity. The study uses a PS-based methodology for dose-response 
estimation for continuous treatments proposed by Graham et al. (2014). The second application considers 
the regional economic impacts of high-speed rail investment in Spain using a DID estimator. 
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Ex-post evaluation of urban road capacity expansions in US cities 

Objective 

The objective of this study is to use available longitudinal data to assess the impacts of urban road 
network capacity expansions on traffic volumes, traffic densities and productivity. 

Method 

The study uses a GPS-based regression methodology to control for confounding and estimate APOs 
and ATEs. The APOs of interest are defined by µ(d) = E [Yit(d)] and the ATEs by τ(d) = E [Yit(d)] − E 
[Yit(0)], where d is some dose of capacity expansion, i indexes units and t indexes time. Calculations are 
made for several doses of interest and a dose response curve is formed using penalised spline regression. 

As mentioned above, the GPS is defined by π(Dit = d|Xit; ) and for valid causal inference we 
require conditional independence and common support: 

Yit(d) ⊥ Dit = d|Xit and Pr(Dit ∈ A|Xit = xit) > 0 ∀ xit, A ⊆ C 

where C is a region of common support (e.g. Hirano and Imbens, 2004). 

Consistency requires that Xit is sufficient to represent confounding. This is, however, effectively an 
untestable assumption. In longitudinal applications we often assume the existence of unobserved 
covariates Ui or Wi, say, which could enter our causal model such that Dit = f (Xit, Ui, Wi) and Yit ⊥ Dit = 
d|Xit, Ui. Thus, Ui is a time-invariant unobserved confounding covariate while Wi is a time-invariant 
unobserved non-confounding covariate. To address this issue, Graham et al. (2014) specify a 
longitudinal mixed (LM) model for the GPS: = + + , +  with     ~ (0,  

 
which, in addition to observed time-varying confounders Xit conditions on unobserved unit level effects 
bi and some lag of the response variable , . Thus the paper proposes a GPS approach to ATE 
estimation which allows for measured time-varying confounding, unobserved time-invariant 
confounding, and bi-directionality between response and treatment.  

Analytical results and simulations presented in the paper show that under given conditions a 
LMGPS approach will yield unbiased estimates of the dose-response function, but more extensive 
conditioning can adversely affect efficiency and can render the task of finding overlap in support of the 
covariate distribution more challenging. 

The algorithm for ATE estimation under the LMGPS approach is as follows: 

• Estimate fD|X,U (Dit|Xit, bi; α) using a mixed model;  

• Use , with some appropriate density function, to calculate LMGPSs for 
observed π(Dit|Xit, bi; ) and unobserved π(d|Xit, bi; ) treatments;  

• Isolate a common support region  

Pr(Dit ∈ A|Xit, bi) > 0 ∀ xit, A ⊆ C ; 
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• Estimate E [Yit|Dit, π(Dit|Xit, bi; )] using a flexible model;  

• Average over predicted values from 4., evaluated at dose d, to obtain a point 
estimate of the APO at d: µ (d);  

• Repeat for all dose of interest, form the dose-response curve, and estimate ATEs:  

τ(d) = µ(d) − µ(0) 

• Use a single (block) bootstrap re-sampling scheme over 1. to 6. to obtain standard 
errors.  

Data  

The data available for estimation are taken from the Texas Transportation Institute (TTI) urban 
mobility data, which describe traffic conditions for 101 US cities over the period 1982-2007. 

• Responses: Annual proportional change in demand (vmt), network performance 
(delay per vmt), and productivity (average wage). 

• Treatment: Annual proportional change in network lane miles. 
• Pre-treatment covariates (confounders): 

− lagged responses: to capture reverse causality 

− congestion and traffic volume: measured by delay and vmt 

− network scale and mix: network length, mix of freeway/arterial 

− traffic mix: volume on freeway/arterial 

− mode characteristics: public transport patronage, state fuel price 

− economy: productivity, income and economic structure 

− employment and population distribution and growth. 

• Unobserved (unknown) confounders: 

− zone/area/region characteristics, road network design, activity/travel 
behaviour. 

Results 

The results for our three responses are shown graphically below. In each figure the y-axis shows the 
ATE and the x-axis shows the corresponding dose of capacity expansion. 

First we consider results for traffic volumes as measured by vmt.  
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Figure 5.4.  Dose-response relationship for traffic volumes 

 

The results show evidence of induced demand over the range of dose having adjusted for 
confounding. The ATE is growing faster than capacity for doses of up to 2% increase in capacity. On 
average we find that a 10% increase in lane miles is associated with a 9% increase in vmt net of "natural 
growth" (estimated 1.4% per annum). As a consequence of this, we find that capacity expansions in the 
range considered have not, in general reduced traffic density (i.e. the traffic volume to capacity ratio). 

Next, we look at impacts on network performance as measured by delay per vmt. 
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Figure 5.5.  Dose-response relationship for network performance 
(delay per vmt) 

 

The results indicate that capacity expansions have not ameliorated urban congestion. The average 
road user has not experienced change in delay from capacity expansions as there have been no 
statistically significant effects on delay per vmt, and we find this to be the case even for large capacity 
expansions. In fact, due to natural growth, congestion has worsened by approximately 3% per annum and 
because there is now more traffic, total urban delay increases over the range of dose. 

Finally, we look at effects on productivity as represented by the average urban wage rate. 
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Figure 5.6.  Dose-response relationship for productivity (average wage) 

 

The results indicate that urban road network expansions have not induced higher productivity. If we 
run a "naïve" regression of productivity on treatment we do find a positive association between capacity 
growth and wages, but we do not find significant ATEs having adjusted for confounding and isolated a 
region of common support. 

Thus, our causal analysis finds that urban road network expansions have induced demand but have 
not ameliorated congestion or raised productivity. These results do not imply that there are no economic 
benefits from road capacity expansions per se. The results are specific to marginal changes on mature 
congested urban networks. While capacity expansions have allowed for increased mobility, in the sense 
that there is more traffic, network generalised costs have not improved and total urban delay has risen. 
The scale (increased traffic) effect does not appear to have influenced productivity (either +ve or -ve). 

Ex-post evaluation of regional economic impacts of high-speed rail in Spain 

Objective 

Between 2000 and 2010, the Spanish Government carried out the largest high-speed rail 
construction programme in Europe, such that by 2011 the Spanish HSR network had become the largest 
in Europe, exceeding France and Germany. By 2020, it is planned that 90% of the country's population 
will live within a 50 km radius to the nearest high-speed rail station. Investments in high-speed rail 
projects are frequently justified on the basis of projected positive effects on regional and national 
economic growth. In this application, a DID analysis is undertaken to study impacts on economic output 
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arising from construction of the Madrid-Barcelona high-speed rail corridor. This is PhD work which is 
still in progress, and is presented here as an illustration of ex-post evaluation rather than as a definitive 
statement on the impacts of HSR in Spain. 

Method 

To assess the effect of the HSR corridor linking Madrid with Barcelona, we divide the Spanish 
economy into 47 peninsular provinces and treat access to HSR as a binary treatment. Provinces 
receiving/not receiving a high-speed rail connection are called treated/untreated and provide the basis for 
the DID analysis. These are shown in Figure 5.7. We use GVA per capita (GVApc) as the outcome 
variable in province i at time t. We run a regression of this response on the year variable, a binary 
variable for each of the groups (east, west and north) and the three interaction terms between year and the 
three potential control groups north, east and west (year*east, year*west and year*north, respectively) 
where the base case is the group of treated provinces. We also estimate the same equation adding two 
covariates to account for the economic structure of the different provinces: share of jobs in 
manufacturing, energy and construction sector (share industry), and share of jobs in the services sector 
(share services). 

Results 

The results indicate that predictions of a positive impact on the economic performance of regions 
receiving HSR have not taken place, at least in the short to medium term. In the case of the 
Madrid-Barcelona HSR corridor, our results show that there are no significant differences in the pattern 
of regional economic growth before and after the HSR corridor between the treated and untreated 
provinces. 

Figure 5.7.  Control and treated provinces for the north-east corridor of Spain 
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Conclusions  

In this chapter we have reviewed methods that seek to draw causal inference from observed data 
and have shown how they can be applied to undertake ex-post evaluation of transport projects. We argue 
that a causal inference framework based on potential outcomes is highly suitable for ex-post appraisal 
because it is specifically designed for instances in which treatments are non-randomly assigned and 
experimentation is not possible, circumstances that characterise the allocation of transport interventions. 
The methods we review have been used extensively for casual analysis across a range of scientific 
disciplines, but to our knowledge have received little attention in transport analyses. We provide two 
applications of ex-post evaluation based on causal techniques: one which evaluates the impacts of urban 
road network capacity expansions in the US, and one which considers the regional economic impacts of 
high-speed rail investments in Spain. 

A major advantage of the statistical causal methods is that we can use them to analyse the impact of 
interventions without making strong a priori theoretical assumptions about underlying economic 
behaviour, as is required in ex-ante or ex-post CBA. However, valid causal inference from observational 
data has its own set of rather stringent assumptions, which in many instances may not hold in the 
available data. 
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