DIRECT ENERGY CONVERSION BY PROTON-CONDUCTING CERAMIC FUEL CELL SUPPLIED WITH CH₄ AND H₂O AT 600-800°C

Satoshi Fukada*, Shigenori Suemori, Ken Onoda

Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University *Corresponding author: 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Tel +81-92-642-4140, Fax +81-92-642-3800, Email sfukada@nucl.kyushu-u.ac.jp

Abstract

Relations between current density and terminal voltage (I-V curves) of the proton-conducting ceramic of $SrCe_{0.95}Yb_{0.05}O_{3-a}$ were determined for application to a fuel cell working at 600 - 800°C. In a similar way to the introduction of a H₂ + H₂O mixture, its anode supplied with a CH₄ + H₂O mixture worked as a fuel cell efficiently without any external CH₄-to-H₂ reformer. The overall electric resistance for the CH₄ + H₂O supply was larger than that for the H₂ + H₂O supply, because of activation over-potential of the anode electrode. Although a small amount of carbon deposited at a narrow interface between the ceramic and the Ni/SiO₂ electrode, it did not affect cell performance. The overall conductivity was smaller than other fuel-cell systems such as PEM-FC. Application to the recovery of tritium from process streams of a fusion reactor was discussed in terms of the protonic conductivity.

Keywords: proton-conducting ceramic, Sr-Ce-Yb oxide, fuel cell, high temperature, CH_4 steam reforming, internal reform.

1. Introduction

Some doped perovskite-type oxides exhibit proton conduction at higher temperatures. SrCeO₃- or CaZrO₃-based ceramics demonstrated higher proton-conducting performance at 600° C to 1000° C [1]. Therefore, application to a hydrogen pump, a hydrogen sensor and a hydrogen (or tritium) purifier operated at 600-800°C is expected in the nuclear engineering field, especially in the tritium recovery process of fusion reactors [2-4]. In order to apply proton-conducting ceramics to produce H₂ and electricity for the effective use of nuclear heat as well as to recover tritium from gas streams in fusion reactors, combining steam-reforming reaction of CH_4 on a Ni catalyst with a proton-conducting ceramic fuel cell was studied experimentally. Especially we focused on mass and charge transfer in a SrCeO₃-based proton-conducting ceramic with internal reformation on a Ni electrode under the supply of $CH_4 + H_2O$. The oxide used in the present experiment was $SrCe_{0.95}Yb_{0.05}O_{3-a}$, and the electrodes were composed of a Ni wire mesh and Ni-SiO₂ paste comprising Ni and SiO2 fine particles and a vaporable paste. The cell system was described by $CH_4+H_2O|Ni|SrCe_{0.95}Yb_{0.05}O_{3-a}|NiO|O_2+H_2O$. Several I-V characteristic curves (i.e., electric current density, I, versus cell potential, V) were determined for different H_2O/CH_4 concentration ratios in the temperature range of 600 to 800°C. A thermodynamic electromotive force, E_0 , and an overall electric conductivity, σ , were determined from the interrupt on the y-axis of an I-V curve and its slope, respectively. These results were compared with our previous results of the direct and alternating current methods [4,5]. They were determined under the condition where a similar cell system composed of SrCe_{0.95}Yb_{0.05}O_{3-a} and porous Ni/SiO₂ electrodes was supplied with a mixture of $H_2 + H_2O$ in the anode and with a mixture of $O_2 + H_2O$ in the cathode. We observed surfaces in/on the porous anode electrode using a SEM (Scanning Electron Microscope) and an EDX (Energy Dispersive X-ray spectroscopy), and we investigated whether or not carbon deposited in/on the porous Ni/SiO₂ electrode.

2. Experimental

Figure 1 shows a schematic illustration of the fuel-cell system used in the present study. Ni-SiO₂ paste (Aremco Corp. Pyro-Duct 598) was painted on both surfaces of a $SrCe_{0.95}Yb_{0.05}O_{3-a}$ ceramic pellet with Ni wire mesh. The surface area and thickness of the ceramic pellet was 1.77 cm² and 3.5 mm. The ceramic was calcinated in an electric heater at 1 000°C for several hours.

Figure 2. SEM photo of NiO/SiO₂ electrode

Figure 2 shows a SEM photo of a porous NiO/SiO₂ electrode. The Ni/SiO₂ electrode in the anode was reduced under H2 atmosphere at 800°C for several hours. Figure 3 shows a SEM photo of the $SrCe_{0.95}Yb_{0.05}O_{3-a}$ electrolyte. A structure of multi-crystal ceramic was observed in this photo.

The ceramic pellet with the porous Ni/SiO₂ electrodes was placed in a 316 stainless-steel holder. A glass gasket was used in order to eliminate gas leak through interfaces between the anode and cathode. The anode was supplied with a gas mixture of $H_2 + H_2O$ or $CH_4 + H_2O$. The H_2 concentration was 20%. The CH₄ concentration was 10%. Results for other H_2 or CH₄ concentrations were reported elsewhere [4,5]. H₂O was added to the CH₄ or H₂ gas flow by a bubbler immersed in a constant temperature bath. The cathode was supplied with a mixture of O₂ and H₂O. The H₂O concentration in the cathode was 20%. The concentrations of H₂, O₂, CH₄, CO, CO₂ and other hydrocarbons at the outlets of the anode and cathode were detected by gas chromatography. The H₂O concentration was measured by a dew-point meter. The gas flow rate was controlled to a constant flow rate by mass-flow regulators. The fuel-cell holder was placed in an electric furnace controlled to a constant temperature. Temperature was measured by C-A thermocouples. I-V curves were determined by a two-terminal direct-current method.

3. Results and Discussion

(1) I-V curves

Figures 4 and 5 show typical I-V curves for the Sr-Ce-Yb fuel-cell system. The former figure shows results for different temperatures and the latter does those for different input CH_4/H_2O ratios. As seen in the two figures, the whole I-V curves were correlated to the following relation:

 $V = E_0 - Id/\sigma \tag{1}$

Figure 4. I-V curves for CH₄+H₂O|Ni|SrCe_{0.95} YbO_{3-a}|NiO|O₂+H₂O cell

Here, V and E_0 are cell potentials or terminal voltage at arbitral current density I and I = 0. Usually, E_0 is called a thermodynamic electromotive force, EMF. The notations of A and δ are a surface area and thickness of the ceramic electrolyte, and s is an electric conductivity. Since measurement was carried out by a direct current method, the s value corresponded to an overall one including the contributions of anode and cathode polarities as well as the protonic conductivity of ceramic electrolyte. The dependence of E_0 on temperature was very small and almost independent of it. On the other hand, the E_0 values slightly depended on the input CH₄/H₂O ratio.

(2) Correlations of E_0 and σ

It was found that the system could work well even without any external CH_4 -to- H_2 reformer. Figure 6 shows a relation of E_0 and the partial pressure of H_2O , pH_2O , supplied to the anode. As seen in the figure, E_0 (on the left-hand-side axis) slightly increased with an increase in pH_2O . This is because the steam-reforming reaction proceeded more with elevating temperature. This increase was attributable to a difference in the H_2 partial pressure, pH_2 , on the anode electrode. When a CH_4 and H_2O mixture was introduced into the anode, the following CH_4 steam-reforming reaction occurred as well as other by-product reactions [6,7].

$$CH_4 + H_2O = CO + 3H_2 + \Delta H_{CH4-H2}$$
 (2)

The E0 values determined were compared with the following Nernst equation [8].

$$E_{0} = -\frac{\Delta G_{H_{2}O}}{2F} - \frac{R_{g}T}{2F} \ln \left(\frac{p_{H_{2}O,cathode}}{p_{H_{2},anode} p_{O_{2},cathode}^{0.5}} \right)$$
(3)

Here, ΔG_{H2O} is a Gibbs free-energy change of the reaction of $H_2 + (1/2)O_2 = H_2O + \Delta H_{H2O}$, and its value was given in the reference [9]. The p_{H2} , anode values determined using Eq. (3) were plotted on the right-hand-side axis of Figure 6. Since the residence time of the $CH_4 + H_2O$ gas in the anode was around one second, the exhaust gas was not under equilibrium condition. Since the order of reaction was the first on p_{H2O} [10,11], the partial pressure of H_2 produced in the anode should be in proportion to p_{H2O} . The experimental results also showed a proportional relation between p_{H2O} supplied and p_{H2} produced. Therefore, $p_{H2, anode}$ was deeply related with the rate of the steam-reforming reaction of Eq. (2). This will be investigated also in the following discussion on σ .

Figure 6. Relation of EMF and p_{H2} versus p_{H20}

Figure 7 shows a comparison of σ between the CH₄ + H₂O and H₂ + H₂O supplies. As seen in the figure, σ for the CH₄ + H₂O supply was much smaller than that for the H₂ + H₂O one. The ratio became over one-tenth, and the σ values for the CH₄ + H₂O supply were independent of p_{H2O}. Referring to the discussion in our previous paper [4], where complex impedance plots were obtained in the system of a SrCe_{0.95}Yb_{0.05}O_{3-a} fuel cell supplied with H₂ + H₂O mixtures, the rate-determining step of the overall charge transfer was H⁺ diffusion in the ceramic electrolyte. Therefore, a decrease in σ for the CH₄ + H₂O supply was not caused by the H⁺ conduction in the ceramic electrolyte. This is because the cathode was under the same condition between the H₂ + H₂O and CH₄ + H₂O supplies. The second contribution

was the oxidation reaction of H_2 in/on the cathode. However, it could not be also explained by the same reason. Therefore, the rate-determining step of the charge transfer for the $CH_4 + H_2O$ supply should be related to the steam-reforming reaction of CH_4 on the anode electrode.

Figure 8. Mass and charge transfer on proton-conducting ceramics fuel cell

Figure 8 shows a schematic illustration of the anode reaction in the present proton-conducting ceramic fuel-cell system. In the anode, the following reactions may occur simultaneously:

- (i) convection of CH₄ and H₂O in the anode,
- (ii) CH₄ and H₂O reaction on/in the porous Ni/SiO₂ electrode,
- (iii) CH₄ and H₂O diffusing through the porous Ni/SiO₂ electrode,
- (iv) reaction product of CO, CO₂ and so on diffusing in a counter-current way,
- (v) decomposition to H atom,
- (vi) H₂ or H diffusion in the porous Ni/SiO₂ electrode,
- (vii) H+ diffusion through the ceramic electrolyte.

The activation energy of σ was 106 kJ/mol for the CH₄ + H₂O supply and 75.6 kJ/mol for the H₂ + H₂O supply. Difference between the two energies was 30 kJ/mol. The value was in close agreement with the activation energy of the reaction-rate constant of Eq. (2) [10]. Therefore, the largest contribution to σ , in other words the rate-determining step, was considered the intrinsic rate of Eq. (2). It was clear that the steam-reforming reaction contributed heavily to the overall conductivity.

(3) Carbon deposition

Figure 9 shows the profile of carbon deposition in the porous Ni/SiO_2 electrode determined using SEM-EDX. There was no carbon deposition on its surface. There were also very few carbon depositions in the porous electrode. This was because the following direct decomposition reaction did not occur in/on the porous electrode.

$$CH_4 = C + 2H_2 \tag{4}$$

The ratio of the CH_4 -to- H_2 direct decomposition rate to that of the CH_4 steam-reforming reaction one was not found to be different from location to location in the porous electrode. Therefore, it was considered that the supply of H_2O was sufficient in the present experiment. It was probable that a sufficient amount of CH_4 and H_2O diffused through the porous electrode and arrived at an electrodeelectrolyte interface. The direct decomposition reaction as well as the steam-reforming reaction simultaneously occurred at a narrow interface under the condition of the sufficient supply of electric charge to the cathode electrode. As seen in Figure 9, some carbon deposited at the narrow interface between the electrolyte and electrode, This may be because the steam-reforming reaction was slower than the protonic conductivity of electrolyte and, consequently, the direct decomposition of CH_4 provided electron and H_+ ion to the interface. Since the carbon deposition was localized at the interface. Therefore, there was no effect on the mass and charge transfer in the present cell system.

The Sr-Ce oxides were stable at 600-800°C when H_2O was added in the streams of anode and cathode. The addition of H_2O was necessary in order to maintain protonic conduction through the ceramic electrolyte [4]. However, it is known that Sr-Ce oxides decomposed to SrCO₃ and CeO₂ at high CO₂ atmosphere [12]. Therefore, the use of the Sr-Ce oxide is not proper under the condition of CO₂ atmosphere. In the present study, gas composition detected in the exhaust from the anode was CH₄, H₂, H₂O, and CO. No CO₂ was observed throughout the present study. This may be because the reaction temperature was higher than 600°C, and a sufficient amount of H₂O was supplied to the anode and cathode. There was high possibility of production of CO₂ at lower temperatures of 300-500°C [7]. The use of a compact Ni electrode in place of the porous Ni/SiO₂ electrode may be proper if CO₂ is

generated in the anode. The ceramic electrode with a compact Ni electrode that was electrically deposited will not contact with CO_2 directly. Therefore, there may be no possibility of the decomposition to $SrCO_3$ and CeO_2 .

(4) Application of Sr-Ce-Yb oxide to high-temperature system

There are several advantages and disadvantages for the present Sr-Ce-Yb oxide fuel-cell system. The largest advantage is that it can work at 600-800°C, at which the steam-reforming reaction simultaneously occurred. The internal reformation became possible at these temperatures. Therefore, its structure became very simple. Heat to maintain the steam-reforming reaction can be converted to electricity directly because of endothermic reaction of Eq. (2). This thing makes it possible to convert the chemical energy of CH_4 to electricity with a higher efficiency. The Carnot-cycle efficiency can be raised by operation at higher temperatures. Its working temperature is near that of a high-temperature nuclear reactor. Therefore, it may be possible to provide measures to utilise nuclear heat with high efficiency. This thinking is taken into consideration in other countries in different ways. There are applications of some ceramics to high-temperature steam electrolysis with use of nuclear heat, such as Generation IV nuclear energy system [13].

On the other hand, the largest disadvantage is that the protonic resistance of the Sr-Ce-Yb oxide was comparatively larger than that of a polymer-electrolyte-membrane fuel cell (PEM-FC) and was comparable with O^{2^-} ion conductivity of an yttria-stabilised zirconia (YSZ). Consequently, as seen in Figs. 4 and 5, the current density through the Sr-Ce-Yb oxide fuel cell was order of mA/cm² and was much smaller than that of PEM-FC. This is because a thin ceramic is very difficult to manufacture. The protonic conductivity of the Sr-Ce-Yb oxide itself was around one-tenth smaller than that of PEM. Moreover, the conductivity was order of 10^{-4} S/cm when a CH₄ and H₂O mixture was supplied directly to the cell without external reformer. The overall conductivity became around 10^{-2} -fold less than that of PEM, because the rate-controlling step was in the steam-reforming reaction.

Judging from the data available in the present study, it is difficult to apply the Sr-Ce-Yb oxide (as it is) to the effective use of nuclear reactor heat, where a large amount heat should be converted to electricity. Considering H₂ production rate, the current density of 1 mA/cm^2 corresponds to the H₂ production rate of $1.2 \times 10^{-6} \text{ Nm}^3/\text{m}^2\text{s}$. Therefore, the surface area of $8.6 \times 10^5 \text{ m}^2$ is necessary for the H₂ production rate of $1 \text{ Nm}_3/\text{s}$. This is an unrealistic scale. On the other hand, it is desirable to utilise the proton-conducting ceramic under special or severe conditions, such as hydrogen or tritium pump at higher temperatures. Converting to tritium activity, the current density of 1 mA/cm^2 corresponds to $11 \text{ MBq/cm}^2\text{s}$. Since the tritium generation rate in a blanket to maintain 1 GW commercial fusion power reactor is 0.63 TBq/s, the surface area of the Sr-Ce-Yb oxide necessary to extract tritium from CH₄ – H₂O or H₂ – H₂O streams as a tritium pump amounts to 5.7 m². It is expected that the tritium pump will be operated at 600-800°C in a blanket tritium recovery system or a tritium purification system in a fusion fuel cycle. This is a realistic scale.

4. Conclusions

The I-V curves for the fuel-cell system composed of a $SrCe_{0.95}Yb_{0.05}O_{3-a}$ ceramic electrolyte and Ni/SiO₂ porous electrodes were determined under the conditions of CH₄ + H₂O and H₂ + H₂O supplies, and the values of E₀ and σ were correlated to a function of temperature and the anode H₂O partial pressure. The E₀ values were consistent with the Nernst equation. It was found that E₀ was a good indication of p_{H2} generated on the anode electrode when the CH₄ and H₂O mixture was introduced into the anode. The σ values determined included the two contributions of the protonic conductivity of the

Sr-Ce-Yb oxide electrolyte and the activation polarity of the steam-reforming reaction on the Ni/SiO2 porous electrode. Because of stable operation of the Sr-Ce-Yb oxide as a fuel cell at 600-800°C, it is expected to utilise the ceramic for tritium pump. The profile of carbon depositions were determined by SEM-EDX, and it was found that carbon depositions by the direct decomposition of CH_4 were localised at a narrow interface between the electrode and electrolyte.

REFERENCES

- [1] H. Iwahara, Solid State Ionics, 77 (1995) 289-298.
- [2] Y. Kawamura, S. Konishi, M. Nishi, Fus. Sci. Technol., 45 (2004) 33-40.
- [3] M. Tanaka, K. Katahira, Y. Asakura, T. Uda, H. Iwahara, I. Yamamoto, J. Nucl. Sci. Technol., 41 (2004) 61-67.
- [4] S. Fukada, K. Onoda, S. Suemori, J. Nucl. Sci. Technol., 41 (2005) 1-7.
- [5] S. Fukada, S. Suemori, K. Onoda, J. Nucl. Mater., in printing.
- [6] S. Fukada, N. Nakamura, J. Monden, M. Nishikawa, J. Nucl. Mater., 329-333 (2004) 1365-1369.
- [7] S. Fukada, N. Nakamura, J. Monden, Int. J. Hydrogen Energy, 29 (2004) 619-625.
- [8] P. W. Atkins, "Physical chemistry", Oxford University Press, England, (1990).
- [9] O. Kubaschewski, C. E. Alcock, "Metallurgical Thermochemistry, 5th ed.", New York, Pergamon Press, (1979).
- [10] W. Jin, X. Gu, S. Li, P. Huang, N. Xu, J. Shi, Chem. Eng. Sci., 55 (2000) 2671-2625.
- [11] I. Alstrup, J. Catalyst, 151 (1995) 216-225.
- [12] T. Scherban, A. S. Nowick, Solid State Ionics, 35 (1989) 189-194.
- [13] For examples, http://www.futurepundit.com/archives/002495.html

TABLE OF CONTENTS

FOREWORD	3
OPENING SESSION	9
<i>Thierry Dujardin</i> Welcome address	11
Osamu Oyamada Opening Remark	13
SESSION I The prospects for Hydrogen in Future Energy Structures and Nuclear Power's Role	15
Chair: M.C. Petri	
<i>M. Hori, M. Numata, T. Amaya, Y. Fujimura</i> Synergy of Fossil Fuels and Nuclear Energy for the Energy Future	17
G. Rothwell, E. Bertel, K. Williams Can Nuclear Power Complete in the Hydrogen Economy?	27
S. Shiozawa, M. Ogawa, R. Hino Future Plan on Environmentally Friendly Hydrogen Production by Nuclear Energy	43
SESSION II The Status of Nuclear Hydrogen Research and Development Efforts around the Globe	53
Chair: M. Methnani, W.A. Summers	
<i>M. Hori, S. Shiozawa</i> Research and Development For Nuclear Production of Hydrogen in Japan	55
A.D. Henderson, A. Taylor The U.S. Department of Energy Research and Development Programme on Hydrogen Production Using Nuclear Energy	73
<i>F. Le Naour</i> An Overview of the CEA Roadmap for Hydrogen Production	79
Y. Sun, J. Xu, Z. Zhang R&D Effort on Nuclear Hydrogen Production Technology in China	85

	A.I. Miller An Update on Canadian Activities on Hydrogen
	Y-J. Shin, J-H. Kim, J. Chang, W-S. Park, J. Park Nuclear Hydrogen Production Project in Korea
	K. Verfondern, W. von Lensa Michelangelo Network Recommendations on Nuclear Hydrogen production
SESS Integr	ION III rated Nuclear Hydrogen Production Systems
	Chairs: A. Miller, K. Verfondern
	X. Yan, K. Kunitomi, R. Hino and S. Shiozawa GTHTR300 Design Variants for Production of Electricity, Hydrogen or Both
	M. Richards, A. Shenoy, K. Schultz, L. Brown, E. Harvego, M. Mc Kellar, J.P. Coupey, S.M. Moshin Reza, F. Okamoto, N. Handa H2-MHR Conceptual Designs Based on the SI Process and HTE 141
	P. Anzieu, P. Aujollet, D. Barbier, A. Bassi, F. Bertrand, A. Le Duigou, J. Leybros, G.Rodriguez Coupling a Hydrogen Production Process to a Nuclear Reactor
	<i>T. Iyoku, N. Sakaba, S. Nakagawa, Y. Tachibana, S. Kasahara, K. Kawasaki</i> HTTR Test Programme Towards Coupling with the IS Process
	H. Ohashi, Y. Inaba, T. Nishihara, T. Takeda, K. Hayashi Y. Inagaki Current Status of Research and Development on System Integration Technology for Connection Between HTGR and Hydrogen Production System at JAEA
SESS Nucle	ION IV ear Hydrogen Technologies and Design Concepts
	Chairs: K. Kunitomi, J.S. Herring, Y.S. Shin, T. Takeda
	K. Onuki, S. Kubo, A. Terada, N. Sakaba, R. Hino Study on Thermochemical Iodine-Sulfur Process at JAEA
	S. Kubo, S. Shimizu, H. Nakajima, K. Onuki Studies on Continuous and Closed Cycle Hydrogen Production by a Thermochemical Water-Splitting Iodine-Sulfur Process
	A. Terada, Y. Imai, H. Noguchi, H. Ota, A. Kanagawa, S. Ishikura, S. Kubo, J.Iwatsuki, K. Onuki, R. Hino Experimental and Analytical Results on H ₂ SO ₄ and SO ₃ Decomposers for IS Process Pilot Plant

<i>M.A. Lewis, M.C. Petri, J.G. Masin</i> A Scoping Flowsheet Methodology for Evaluating Alternative Thermochemical Cycles 219		
S. Suppiah, J. Li, R. Sadhankar, K.J. Kutchcoskie, M. Lewis Study of the Hybrid Cu-Cl Cycle for Nuclear Hydrogen Production		
<i>M. Arif Khan, Y. Chen,</i> Preliminary Process Analysis and Simulation of the Copper-Chlorine Thermochemical Cycle for Hydrogen Generation		
W.A. Summers, J.L. Steimke Development of the Hybrid Sulfur Thermochemical Cycle		
P. Anzieu, P. Carles, A. Le Duigou, X. Vitart, F. Lemort The Sulfur-Iodine and Others Thermochemical Processes Studies at CEA		
<i>K-K. Bae, K-S. Kang, S-D. Hong, C-S. Park, C-H. Kim, S-H. Lee, G-J. Hwang</i> A Study on Hydrogen Production by Thermochemical Water-splitting IS (Iodine-Sulfur) Process		
<i>P. Zhang, B. Yu, L. Zhang, J. Chen, J. Xu</i> Present Research Status and Development Plan of Nuclear Hydrogen Production Programme in INET		
<i>T. Nakagiri, T. Kase, S. Kato, K. Aoto</i> Development of the Thermochemical and Electrolytic Hybrid Hydrogen Production Process for Sodium Cooled FBR		
J.S. Herring, J.E. O'Brien, C.M. Stoots, G.L. Hawkes, P. Lessing, W. Windes, D. Wendt, M. Mc Kellar, M. Sohal, J.J. Hartvigsen Progress in High-temperature Electrolysis for Hydrogen Production		
Y. Kato Possibility of a Chemical Hydrogen Carrier System Based on Nuclear Power		
SESSION V Basic and Applied Science in Support of Nuclear Hydrogen Production		
Chairs: Y. Kato, P. Anzieu, Y. Sun		
<i>C-H. Kim, B-K. Kim, K-S. Kang, C-S. Park, S-H. Lee, S-D. Hong, G-J. Hwang, K-K. Bae</i> A Study on the HI Concentration by Polymer Electrolyte Membrane Electrodialysis		
H-S. Choi, G-J. Hwang, C-S. Park, H-J. Kim, K-K. Bae The Preparation Characteristics of Hydrogen Permselective Membrane for Higher Performance in IS Process of Nuclear Hydrogen Production		
H. Karasawa, A. Sasahira, K. Hoshino Thermal Decomposition of SO ₃		

S. Fukada, S. Suemori, K. Onoda	
Direct Energy Conersion by Proton-conducting Ceramic Fuel Cell Supplied with	
CH_4 and H_2O at 600-800°C	
M.Ozawa, R. Fujita, T. Suzuki, Y. Fujii	
Separation and Utilisation of Rare Metal Fission Products in Nuclear Fuel Cycle as	
for Hydrogen Production Catalysts?	
H. Kawamura, M. Mori, S-Z. Chu, M. Uotani	
Electrical Conductive Perovskite Anodes in Sulfur-based Hybrid Cycle	
Y. Izumizaki, K-C. Park, Y. Tachibana, H. Tomiyasu, Y. Fujii	
Generation of H ₂ by Decomposition of Pulp in Supercritical Water with Ruthenium	
(IV) Oxide Catalyst	
SESSION SUMMARIES	
RECOMMENDATIONS	
A List of Destining at	202
Annex A: List of Participants	
Anner B: Meeting Organisation	411
Annex D. Meeting Organisation	
Annex C: Additional Presentations to the Second HTTR Workshop	

From: Nuclear Production of Hydrogen Third Information Exchange Meeting, Oarai, Japan, 5-7 October 2005

Access the complete publication at: https://doi.org/10.1787/9789264026308-en

Please cite this chapter as:

Fukada, Satoshi, Shigenori Suemori and Ken Onoda (2006), "Direct Energy Conversion by Proton-Conducting Ceramic Fuel Cell Supplied with CH4 and H2O at 600-800°C", in OECD/Nuclear Energy Agency, *Nuclear Production of Hydrogen: Third Information Exchange Meeting, Oarai, Japan, 5-7 October 2005*, OECD Publishing, Paris.

DOI: https://doi.org/10.1787/9789264026308-35-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d'exploitation du droit de copie (CFC) at contact@cfcopies.com.

