1887

The Bioeconomy to 2030

Designing a Policy Agenda

image of The Bioeconomy to 2030

The biological sciences are adding value to a host of products and services, producing what some have labelled the “bioeconomy” and offering the potential to make major socio-economic contributions in OECD countries.  Using quantitative analyses of data on development pipelines and R&D expenditures from private and public databases, this book estimates biotechnological developments to 2015. Moving to a broader institutional view, it also looks at the roles of R&D funding, human resources, intellectual property, and regulation in the bioeconomy, as well as at possible developments that could influence emerging business models to create scenarios to 2030. These scenarios are included to stimulate reflection on the interplay between policy choices and technological advances in shaping the bioeconomy. Finally, the book explores policy options to support the social, environmental and economic benefits of a bioeconomy.

English Also available in: French

The Bioeconomy of 2030

What is the bioeconomy of 2030 likely to look like? This chapter describes a “probable” bioeconomy in 2030 and develops two fictional scenarios that explore the interaction of different factors on possible futures. The “probable” bioeconomy builds on the types of products that are likely to reach the market by 2015. Within the OECD region, biotechnology could contribute to 2.7% of GDP in 2030, with the largest economic contribution of biotechnology in industry and in primary production. The economic contribution of biotechnology could be even greater in developing countries, due to the importance of these two sectors to their economies. The scenarios assume an increasingly multi-polar world, with no single country or region dominating world affairs. They include plausible events that could influence the emerging bioeconomy. The results highlight the importance of good governance, including international cooperation, and technological competitiveness in influencing the future. Complex scientific challenges and poorly designed regulations could reduce the ability of industrial biotechnologies to compete with other alternatives. For instance, rapid reductions in the cost of renewable electricity combined with technical breakthroughs in battery technology could result in electrical vehicles outcompeting biofuel transport systems. Public attitudes could result in some biotechnologies not reaching their potential. An example is predictive and preventive medicine, where the advance of this technology could be limited by public resistance to poorly planned and intrusive healthcare systems.

English Also available in: French

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error