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In this chapter we describe how we included travel-time variability in the national Dutch 
transport forecasting model and the policy impacts of this new forecasting tool. Until now, travel-
time reliability improvements for road projects were included in Dutch cost-benefit analysis (CBA) 
by multiplying the travel-time benefits from reduced congestion by a factor 1.25. This 
proportionality is based on the linkage between congestion reduction and reliability improvements. 
However, this treatment of reliability is not useful to evaluate policies that especially affect travel-
time variability. From the start, this method was provisional and meant to be replaced by a better 
method capturing travel-time variability. For this, we derived an empirical relation between the 
standard deviation of travel time, mean delay of travel time and length of route. This has been 
implemented in the national Dutch model as a post processing module. The new travel-time 
reliability forecasting model will be incorporated in the Dutch guidelines for CBA. 
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Introduction 

Absence of travel-time reliability is what the travellers notice: “that frustrating characteristic of the 
transportation system that prompts motorists to allow an hour to make a trip that normally takes 
30 minutes because the actual trip time is so unpredictable” (TRB, 2000: p. 4-1). The ITF (2010: p. 31) 
defines reliability as “the ability of the transport system to provide the expected level of service quality 
upon which users have organised their activity”. The key aspect of this definition is the assumption that 
network users have an expectation of a particular level of service and that reliability is a measure of the 
extent to which the traveller’s experience matches their expectation (Hellinga, 2011). In other words, 
reliability is equivalent to the predictability of travel times and, from the perspective of a traveller, 
associated with the statistical concept of variability. If one takes the perspective of a system or 
infrastructure network manager, then reliability measures are focused on the network and its 
performance, i.e. the fraction of time during which the system performs below a certain quality standard. 
In this chapter we take the perspective of the road user (passenger as well as freight transport) whereby 
reliability is focused on trip characteristics. 

Travellers and firms may account for the variability in their trips and transport of goods by building 
in time-buffers as insurance against late arrival. This implies that the consequences of late arrivals can be 
costly. Not only does the efficiency and productivity lost in these buffers represent a cost that travellers 
and firms absorb due to unreliability, but also stress, late arrivals, missed connections, missed 
appointments and early arrivals can be costly. Reliable travel times are intrinsically valuable and network 
users place a significant value on reliability. Therefore, reliability can be formulated in terms of societal 
costs. This has the advantage that the investment costs of an infrastructure project to improve reliability 
can be traded-off against its benefits for society. 

In the Netherlands, transport infrastructure projects and other transport policies are ex-ante evaluated 
using cost-benefit analysis (CBA). To incorporate reliability improvements in project and policy 
evaluation, the Dutch Ministry of Infrastructure and the Environment included the societal benefits of 
reliable and predictable travel times into CBA. Since 2004, in Dutch CBA practice, an extra benefit of 
25% of the travel-time benefits due to reduced road congestion is added to account for reliability benefits 
(Besseling et al., 2004). This approach is only used for road projects and is based on the linkage between 
congestion reduction and improved reliability. However, it does not evaluate consequences of policies 
that especially affect travel-time variability. 

From the start, this method was provisional and meant to be replaced by a better method capturing 
travel-time variability. To include travel-time reliability in CBA, three types of information are needed, 
namely (De Jong and Bliemer, 2015): 

• monetary values to convert reliability benefits into money units 

• a model to predict how much an infrastructure improvement project will change travel-time 
variability 

• a model to predict whether network users will change their route choice, mode choice or 
departure time choice due to changes in travel-time variability. 
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The monetary value of changes in average travel time has been long included in CBA by making use 
of the so called value of travel-time savings (VTTS). The VTTS refers to the monetary value travellers 
place on reducing their average travel time by one hour. In contrast, the value of travel-time reliability 
savings (VTTRS) to convert changes in travel-time variability in monetary units is relatively new. A 
recent study for the Dutch Ministry of Infrastructure and the Environment, delivered updated VTTS and 
VTTRS based on primary data (KiM, 2013; De Jong et. al, 2014; Kouwenhoven et. al, 2014). Based on 
earlier work (Hamer et. al, 2005; HEATCO, 2006) it was decided that the variability of travel time 
should be measured by standard deviation of the travel-time distribution. The main reason behind this 
choice was the assessment that including travel-time variability in transport forecasting models would be 
quite difficult and that using the standard deviation would be the easiest option. Any formulation that 
would go beyond the standard deviation or the variance of travel time1 would be asking too much of the 
Dutch national and regional transport models (LMS and NRM) that are regularly used in CBA in the 
Netherlands. The standard deviation is also used as a reliability indicator in the US, UK and 
Scandinavian countries. The disadvantage of this definition is that it does not capture skewness of the 
travel-time distribution. It is well known that travel-time distributions are skewed and their long tails 
towards extreme travel times are an important aspect of travel-time reliability (see also Hellinga, 2011). 
Studies on network robustness and vulnerability focus on these extreme travel times and their causes. 

The inclusion of travel-time variability in transport forecasting models is challenging because 
transportation planning models that are used to evaluate and prioritise transport policies have been 
developed to capture average travel time and not travel-time variability. To adapt the Dutch national and 
regional models to capture reliability in terms of standard deviation, a project was started in 2013. The 
objective was to find a (new) empirical relation between the standard deviation of car travel time and 
other variables available in LMS and NRM. This chapter reports the main results of this study. The 
improved modelling to forecast travel-time variability will be implemented in Dutch policy making. 
Incorporating the consequences of policies affecting travel-time variability into infrastructure CBA 
encourages proper consideration of options. 

The next section of this chapter discusses the methodology. The database which was used to derive 
the empirical relation is then described in the following section. Subsequent sections show how the best 
empirical relation was fitted. The policy impacts of the new reliability forecasting tool are then discussed 
before the chapter ends with our conclusions and future steps. 

Methodology 

In the Netherlands, traffic forecasts for CBAs are usually made using the LMS (the national transport 
model) or one of the NRMs (the regional transport models). These are similar tour-based models 
containing the four steps of a classical transport model (tour generation, destination choice, mode choice 
and route choice) plus a departure time choice module (Willigers and de Bok 2009; Significance, 2011). 
The tour generation, destination, mode and departure time choices in the LMS and NRM are based on 
disaggregate models, i.e. these choice models are estimated at the level of an individual traveller. Route 
choice (i.e. the assignment) for road transport is modelled at the level of origin-destination flows. In an 
iterative process, the resulting travel times are fed back into the earlier modules so that the travellers can 
adapt their choices as a result of possible congestion. 
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The assignment module generates the mean travel time on an average working day for each 
origin-destination pair and for each time-of-day period. In this process, flows are assigned to routes 
through the network and for each link in the route a travel time is calculated based on speed-flow curves 
and on a queuing model. The speed-flow curves are determined using empirical data for each road type. 
Note that the calculated mean travel time includes delays due to congestion. 

Next to travel time and cost, reliability can be an important driver for mode choice, route choice and 
time-of-day choice (de Jong and Bliemer, 2015). Ideally, this variable would be included in these choice 
modules as an explanatory variable. However, this would require extensive data collection, modelling 
and adaptation of the current models. As a second best and much quicker solution, we have developed a 
post-processing module that calculates the reliability of road travel times for each origin-destination pair 
and for each time-of-day period. This allows us to calculate travel-time reliability levels for any future 
scenario and to include the costs or benefits of possible changes in reliability in the CBA (Figure 3.). 
Each policy measure that can be simulated with the LMS/NRM (adding road capacity, road pricing, etc.) 
can also be studied for its effects on travel-time reliability. 

Figure 3.1.  The role of the transport models LMS/NRM and the post-processor LMS-BT in CBA 

 

This post-processing module requires an empirical relation between travel-time reliability and any of 
the output variables that are available in the LMS and NRM such as travel time, congestion, flow, etc. 
but also the road characteristics that are available in the model (maximum allowed speed, number of 
lanes, etc.). To derive such a relation, we need to have a database with observed levels of reliability and 
of all the other variables. This database is described in the next section. 

When compiling such a database a number of decisions need to be made. These decisions can have a 
profound impact on the results. To prevent any inconsistencies, it is paramount that consistency with 
both the LMS/NRM and CBA procedure drives these decisions: 

• As explained in the introduction, we use “the standard deviation of the travel-time distribution” 
as our reliability indicator. However, we still need to define which travel-time distribution. It is 
common to compile a travel-time distribution by measuring the mean travel times on a number 
of days within a certain period (e.g. one month or one year) when departing at the same time 
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(e.g. between 08:00 and 08:15). In this way, reliability is interpreted as day-to-day travel-time 
variability. In this chapter we follow this approach. We have measured mean travel times over 
a period of one year (2012) for vehicles departing in the same 15-minute interval. This means 
that for each 15-minute period, we have a different travel-time distribution and hence a 
different value of the reliability indicator. 

• Note that by taking the mean travel time when departing at the same time, we already exclude 
the vehicle-to-vehicle variation from the reliability indicator. To a certain extent, this makes 
sense. Some vehicle-to-vehicle variation is caused by driver characteristics; some prefer to 
drive more slowly than others. These drivers may have other mean travel times, but still have 
the same travel-time reliability. However, some of the vehicle-to-vehicle variation is caused by 
infrastructure: departing a fraction of a second later may result in just having to stop for a red 
traffic light and having a delay of one minute. Ideally, this is the type of variation that is 
included in the reliability indicator. However, in our project it is excluded because of the 
method we use to measure reliability. 

• The LMS/NRM forecasts mean travel times and vehicle volumes for an average hour during 
the morning peak (lasting from 07:00 until 09:00), during the evening peak (from 16:00 to 
18:00) and for a typical hour during the rest of the day (defined as an average hour between the 
mid-day period, i.e. between 10:00 and 15:00). In order to find the average reliability indicator 
for these three periods, we average the reliability indicators over all the 15-minute periods 
during these periods (eight 15-minute periods for each peak and twenty-eight 15-minute 
periods during the mid-day period). The reliability indicator for each 15-minute period is 
weighted with the average volume during that period. 

• Note that this is different from first averaging the travel time over the full morning peak (for 
example) for every day of the year and then producing the travel-time distribution and 
determining the standard deviation. Travel times will not be constant over a two-hour period 
and this variability must be included. In order to calculate the pure reliability, the day-to-day 
variability must be determined with a small departure time resolution (15 minutes or less, 
depending on the time period over which the travel time on a day can be considered more or 
less constant), then the reliability indicator should be determined for each (small) time interval. 
Only in the final step, is the reliability indicator averaged over a longer period (e.g. over the 
whole peak). 

• In Dutch policy, reliability and predictability are considered from the viewpoint of the traveller, 
(Ministry of Infrastructure and the Environment, 2012). Therefore, reliability should be defined 
in terms of the deviation of the real travel time from the predicted travel time. As a 
consequence, we should not look at the mere day-to-day variability of travel times, but correct 
for the variation in expected travel time. As an example: suppose that the travel time on a 
certain route is always 70 minutes on Mondays, and always 65 minutes on other days, then the 
travel time is perfectly predictable, and hence, perfectly reliable – given that the travellers 
know this. 

• Extremely long travel times have a severe impact on the computed standard deviation. The long 
travel times can be caused by malfunctions in the detectors, but they can also be real events 
(e.g. a breakdown of the traffic system because of a severe accident or due to extreme weather 
conditions. Should these be included in the travel-time distribution? To decide on this, it is 
crucial to understand how results will be used. It is important to be consistent with the method 
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used to determine the mean travel times in the demand model: did they include these long 
travel times? Also, consistency is needed with the method used to determine the VTTRS. 

• In the Dutch situation, the speed-flow curves that are the base for the travel time calculations in 
the national model do not include extreme events. Additionally, the value of travel-time 
reliability savings was determined using a stated preference experiment in which a travel-time 
distribution was shown without any extreme events (Significance et al., 2007). Finally, we 
believe that these extreme travel times have different causes than normal day-to-day variation. 
From a policy point-of-view it is better to treat them separately.2 Hence, in this project we 
excluded these data points from the analysis. In the next two sections of this chapter, we 
analyse the impact of this on the outcomes. 

Data 

We compiled two databases with travel times: one for highway trips and one for trips on other roads. 
Since the Dutch national model produces forecasts for an average working day, we selected data from all 
251 days in 2012 that fell within this definition. 

Most Dutch highways are equipped with detector loops that measure average vehicle speed and 
volume at one-minute intervals. Fifteen-minute averages of these variables were available for this 
project. We defined 250 routes on the Dutch highway network. Each realistic and logical route started at 
(or near) a highway entrance and ended at a highway exit, meaning that each route can comprise multiple 
links. The routes covered the network as completely as possible and overlapped each other as little as 
possible. Characteristics can be found in Table 3.1. 

Table 3.1.  Characteristics of selected routes 

 Highways (250 routes) Other roads (40 routes) 

 Average Minimum - Maximum Average Minimum - Maximum 

Length (km) 41.5 1.9 - 224.8 5.3 1.7 - 13.8 

Average speed (km/h) 93.6 28.3 - 116.7 48.6 13.8 - 97.8 

Av. max. speed (km/h) 112.7 92.4 - 123.6 66.0 23.5 -  109.0 

Number of links 34.1 1 - 200 n.a n.a. 

Major urban and regional roads are equipped with video cameras. With the use of Automatic Number 
Plate Recognition (ANPR) techniques, passage times of individual vehicles are recorded. Combining 
information from multiple cameras average travel times over fifteen minutes can be obtained. Since this 
project focussed on highway travel, only 40 urban and regional routes on non-highways roads were 
defined to be used in this project. The full data set was compiled in four steps, as described below. 
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Determining raw travel times 

The travel-time data from video cameras for other roads are already for the full route. However, the 
highway detectors only provided local speeds and these needed to be converted to mean travel times 
between two detector loops. 

Vehicle speeds at each detector were estimated by adding these mean travel times, the total travel 
time for each route when departing within a certain 15-minute interval was determined. We took into 
account the fact that a vehicle on a long route does not pass all detectors in the same 15-minute interval. 
Since it turned out to be technically complex to combine data from consecutive days, we only looked at 
the ninety-two 15-minute intervals between 0:00 and 23:00. The average volume over a route was 
calculated by averaging the volumes at the detector loops (weighted with the length between the loops). 

In this way, a database with mean travel times and volumes for 250 highway routes, on each of the 
251 working days, for a departure time in each of the ninety-two 15-minute intervals was compiled. 
These data were enriched with the free-flow travel times and with route characteristics such as the length 
and the capacity (i.e. for each route, the maximum volume over 251 working days and ninety-two 15-
minute periods). 

Travel-time delays will be correlated between adjacent links, so the standard deviation of the total 
route travel time cannot be derived directly from the standard deviations of link travel times. Therefore, 
only the total route travel time is stored and the standard deviation is calculated only in the final step. 

Excluding extreme events 

As explained in the previous section, we exclude extreme events from the travel-time distributions, in 
part because they have a strong impact on the standard deviation, but also for consistency in their 
application. However, it is not clear where to put the boundary for exclusion of an extreme travel time. 

To determine this boundary, we visually inspected the raw travel-time distributions of all 
250 highway routes (see Figure 3.2 for four examples). A boundary of three times the (raw) standard 
deviation above the mean travel time produced a good match with a visual classification of outliers for 
most routes. However, especially for routes with low congestion an additional criterion turned out to be 
necessary: the travel time of an outlier should be at least above 150% of the mean travel time. So, travel 
times are excluded with: 

( )kjkjkjkji TTTTTT ,,,,, %150,3max ⋅+> σ  (1) 

in which TTi,k is the travel time for day i, route j and 15-minute departure time period k, kjTT ,  is the 
mean travel time for departure time period k, and σj,k is the standard deviation of the travel-time 
distribution for time period k (before exclusion of extreme events). For each 15-minute period, 
equation (1) results in the exclusion of on average 4 out of the 251 working days. As a result, the average 
standard deviation over all 250 routes is reduced by 29 %. In other words, 1.6% of the days contribute to 
almost one-third of the standard deviation. 
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Figure 3.2.  Travel-time distributions for four routes with different characteristics 

 

Correcting for variations in travel-time expectation 

As explained in in the methodology section, we want to determine the deviation of the real travel 
time from the travel time as expected by the traveller. Unfortunately, no information is available about 
these expectations. Therefore, for each day, we approximate the expected travel time by taking the mean 
of the travel times on the same day-of-the-week in the four weeks before and after this day. For instance, 
our approximation of the expected travel time for Wednesday, 20 June, is the mean of the travel times on 
the Wednesdays 23 and 30 May; 6, 13 and 27 June; 4, 11 and 18 July. This running average reflects day-
of-the-week and seasonal fluctuations in the mean travel time, but no incidental variations. No travel 
times that are marked as an outlier, are included in the calculation of the expected travel time. For 
holiday periods, when almost no congestion exists, the mean travel time of the four days directly before 
and after each day are taken. 

As a result of this correction, the average standard deviation over all 250 routes is reduced by another 
12% on top of 29% reduction in the previous step. 

Calculation of the reliability indicator 

For each route, for each day of the year, for each 15-minute period, we calculate the deviation of the 
real travel time from the expected travel time. Next, for each route and each 15-minute period, we 
determine the standard deviation of the deviations over all days (excluding the extreme events). For each 
period of the day (morning peak, evening peak, mid-day period), the mean travel time and the mean 
standard deviation is calculated by taking the average over the relevant 15-minute periods weighted by 
their mean flows. 
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Testing alternative empirical relations for travel-time reliability 

Our final databases contain 750 highway observations (250 routes times, 3 time-of-day periods) and 
120 observations non-highway observations (40 routes times, 3 time-of-day periods). Each observation 
consists of an average travel time (averaged over all workdays in 2012), a standard deviation (of the 
distribution of deviations from the expected travel time), and other characteristics of the route (length, 
number of lanes, etc.). The non-highway routes are very diverse in nature (highway feeder routes in 
urban areas versus regional routes connecting two highways etc.) and are relatively short (see Table 3.1). 
This limited number of observations did not allow for extensive modelling efforts. However, the 
highway database was extensive and we were able to fit several functional forms described in the 
literature such that the results could be compared. 

This analysis aims at finding the best functional forms of the empirical relations for our highway 
database. We do not try to compare the estimated coefficients with other studies as these values strongly 
depend on the outlier criterion used, on the way the variation of expected travel time is taken into 
account and on the period over which the data is averaged (also discussed in the next section). The 
conclusions on the best functional form are only valid for our own data set. It is well conceivable that 
other functional forms describe datasets in other countries better. 

Many other researchers have used data sets that combined several routes and a range of 15-minute 
periods. The variation of standard deviation by routes may follow a different relation than the variation 
by 15-minute periods as can be seen from Figure 3.3. For the purpose of this project, we are only 
interested in the variation between routes for the morning peak, evening peak and mid-day period. In the 
evaluation of the results, we concentrate on the best functional form for the variation of the standard 
deviation by routes for the morning peak. The best function is one that describes the data best, and does 
not show any curvature that is not supported by the data (neither inside nor outside the data range). 

In this analysis we tested functional forms that were suggested in earlier studies covering a wide 
range of possible functional forms that use different independent variables (travel time, travel time per 
kilometre, congestion index, mean delay). However, this list is not comprehensive. For a more complete 
overview of functional forms, see De Jong and Bliemer (2015). 

Figure 3.3.  Travel time per km versus standard deviation per km 

 
Note: Values for a single route (left) and for 250 routes for the morning peak (right). Both datasets are fitted with cubic 
polynomials (dark lines) which are clearly different. 
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Linear model (the Netherlands – Hellinga) 

The first functional form under consideration is a simple linear relation between the standard 
deviation σ and the mean travel time TT: 

TTaa ⋅+= ]1[]0[σ   (2) 

in which a[0] and a[1] are coefficients to be estimated. This functional form was used by Hellinga (2011) 
in his study of the variation of travel time on a single route of about 25 kilometres on the A12 highway in 
the Netherlands. Travel times were derived from detection loop data averaged over 15-minute periods. 
Each 15-minute period provided one data point, so his final data set consisted of 92 points, since he 
excluded trips after 23:00. 

Hellinga only considered the variation between 15-minute periods and concluded that a linear 
relation was sufficient. If we analyse the variation between 15-minute periods for each of our 250 routes, 
we see that for short routes a linear relation is sufficient, though for longer routes with congestion, a 
decreasing slope can be observed (as is illustrated by the single route data in Figure 3.3-left). If we fit the 
linear relation (2) to our morning peak data for 250 routes (Figure 3.4) we see that our data can be nicely 
described by this relation, though a reasonable amount of spread around this relation remains. The 
adjusted R2 is 0.75.3 

Figure 3.4.  Travel time versus standard deviation fitted with a linear function 

 

Length-standardised linear model (US – SHRP2) 

Several US researchers within the second Strategic Highway Research Program (SHRP2, see 
Mahmassani et al., 2014) use the standard deviation of standardised travel time. This network approach 
has the advantage that it can also be applied if multiple routes are used between A and B with different 
lengths. It is especially suitable for dense urban networks. The SHRP2 researchers have shown that there 
is an almost linear relation between the travel time per unit length and the standard deviation per unit 
length 

L
TTaa

L
⋅+= ]1[]0[σ

  (3) 

in which L is the length of the route and a[0] and a[1] are coefficients to be estimated. 
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If the observations in our database are converted to this metric, a linear function fits very well (Figure 
3.5, dark line). However, some variation remains unexplained: the adjusted R2 is 0.78, which is slightly 
better than for the linear relation above. 

Length-standardised cubic model (United Kingdom – Mott MacDonald) 

In the UK, Mott MacDonald estimated relations for the day-to-day variability which they describe as 
“what remains after accounting for all predictable variations (time of day effects, day type effects and 
seasonal effects) and variability due to incidents” (Sirivadidurage et al., 2009). They used data from 
inductive loop sensors, automatic number plate recognition and matching and GPS tracking, averaged 
over 15-minute periods on several highway routes. Journey times that are more than 2 standard 
deviations above the mean are flagged as incidents and were excluded. Predictable variations were 
accounted for by allocating each day of the year to one of 21 day types and by determining average 
journey times and standard deviations for each of these day types. 

They present graphs with mean journey time per kilometre versus standard deviation per kilometre 
for several motorway types. The graphs for motorways with mandatory variable speed limits and with 
dynamic hard-shoulder running show indications for a relation that is slowly increasing for low 
congestion levels, increasing quickly for medium congestion levels and flattening for high congestion 
levels. They tried several functional forms and they obtained the best results when describing the 
standard deviation of travel time per kilometre as a cubic polynomial of the mean travel time per 
kilometre: 

32

]3[]2[]1[]0[ 





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




⋅+⋅+=
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L
TTa

L
TTaa

L
σ

  (4) 

They observed that mean delay per kilometre instead of mean travel time per kilometre gave a 
marginally better fit, however, the computation of free flow travel times had some difficulties.  

The fit of function (4) on our morning peak data (Figure 3.5, dark grey line) flattens above around 
1.3 minutes/km which is not supported by the data. The adjusted R2 is the same as for the fit of the linear 
function (3). We conclude that for the standard deviation per kilometre as a function of the travel time 
per kilometre a linear function is sufficient and that applying a cubic polygon does not improve the fit. 

Figure 3.5.  Travel time per km versus standard deviation per km fitted with a linear relation and a cubic 
polynomial 
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Power-law relation between coefficient of variation and congestion index (UK – 
ARUP/WebTAG) 

Arup et al. (2003) analysed travel-time variability on urban roads by estimating a model to travel 
times from a few probe vehicles in London and Leeds gathered over a period of about one month. They 
observed that variability is likely to be greater as flows reach capacity. Based on some theoretical 
considerations, they estimated a power-law relation between the coefficient of variation (CV, i.e. the 
ratio of standard deviation to the mean travel time), the congestion index (CI, i.e. ratio of the mean travel 
time to the free-flow travel time) and the length of the route L:  

]2[

]1[

]0[ a

a

ff

L
TT
TTa

TT
⋅










⋅=

σ
 (5) 

in which TTff is the travel time under free-flow conditions. 

A consortium led by Hyder Consulting (Hyder Consulting et al., 2008a, 2008b; Gilliam et al., 2008) 
collected new data from GPS equipped vehicles on 34 routes (up to 12 km long) within the 10 largest 
urban areas in England for a period of three years. They estimated the same function on their data and 
found similar coefficients as Arup et al. Today, this functional form is recommended in the WebTAG 
guidance of the UK Ministry of Transport (2014). 

Unfortunately, this functional form does not fit our data well (adjusted R2 is only 0.57, which is much 
lower than for the functions above), as can be seen from Figure 3.6 (light grey line). This is probably due 
to the fact that our data is for highways and this functional form was derived for urban roads. Most 
notably, our data strongly supports a functional form that goes (closely) through the point 
(CI,CV) = (1,0) whereas this functional form does not. For highways routes it is understandable that in 
the absence of any congestion, very little travel-time variability is observed, whereas for urban roads 
variability will remain through differences in signalling or pedestrian crossings. 

Exponential function between coefficient of variation and congestion index (Sweden – 
Eliasson) 

Eliasson (2006) fitted an exponential function to the coefficient of variation for 20 roads and for 
ninety-six 15-minute periods in Stockholm, Sweden. Data was collected from automatic camera systems 
taking pictures of licence plates. These roads were characterised as “urban”, i.e. neither highways, nor 
small local streets. Lengths varied between 300 metres and 5 kilometres. 

When inspecting the relation between the congestion index and the coefficient of variation for all 
15-minute periods for each road, Eliasson noticed that the coefficient of variation remained roughly 
constant for low levels of congestion and increased for slightly higher levels. For high levels of 
congestion the coefficient of variation decreased again. Therefore, he used a cubic polynomial (excluding 
the second-order term) of the congestion index minus 1: 
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Again, we tried to fit this functional form to our data, but this did not lead to a satisfactory result 
(Figure 3.6, dark grey line), though the adjusted R2 is slightly better than for the fit of function (5). In our 
data we observed neither a roughly constant coefficient of variation for low congestion levels, nor a 
decreasing coefficient of variation for high congestion levels. This different behaviour is likely due to the 
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fact that our database consists of longer highway routes rather than short urban routes. Furthermore, we 
investigate the variation between routes whereas Eliasson also included the variation between 15-minute 
periods. 

Figure 3.6.  Congestion index versus coefficient of variation fitted with a power law and with an 
exponential function 

 

Power-law relation between standard deviation and mean delay (Germany – Geistefeldt et 
al.) 

Recently, the German Federal Ministry of Transport (BMVBI) funded a research project on the 
reliability of travel time on their highways. Geistefeldt et al. (2014) suggested using a power-law 
function between the standard deviation and the mean delay (i.e. the difference between the mean travel 
time and the free flow travel time): 

]1[]0[ aMDa ⋅=σ   (7) 

where MD is the mean delay. They estimated their coefficients on simulated data from a macroscopic 
traffic simulation model. 

This functional form seems to describe our data well (Figure 3.7, light grey line). Note that the spread 
of the data points in Figure 3.7 is small compared to the spread when relating the standard deviation to 
the travel time (Figure 3.4) or when relating the travel time per kilometre to the standard deviation per 
kilometre (Figure 3.5). The adjusted R2 of 0.82 is the better than for the fits previously discussed. So, 
using the mean delay as the explanatory variable seems to be a good idea. 

Polynomial of mean delay and length (the Netherlands – Peer et al.) 

Peer et al. (2012) estimated a relation between the standard deviation and the mean delay. In her PhD 
research she tried multiple functions on data from 145 highway routes and fifty-seven 15-minute periods. 
The best function contained (among other terms) a cubic polynomial in the mean delay and a quadratic 
polynomial in the length: 

termsotherLaLaMDaMDaMDaa +⋅+⋅+⋅+⋅+⋅+= 232 ]5[]4[]3[]2[]1[]0[σ  (8) 

This function fits our data very well (note the adjusted R2 of 0.96 in Figure 3.7, dark grey line). 
However, the slope of the fitted function for the morning peak seems to steepen above a mean delay of 
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about 30 minutes which is not supported by the data. So, the cubic polynomial may lead to unwanted 
behaviour outside the range on which it was fitted. 

Figure 3.7.  Travel time versus standard deviation fitted with a power law and a cubic polynomial 

 

A new empirical relation for the Netherlands 

Best functional form 

From Chapter 4 we conclude that the best results are obtained when relating the standard deviation to 
the mean delay. However, using a cubic polynomial may not be optimal. Therefore, we decided to test a 
combination of a linear and logarithmic function for the mean delay, and added a linear term in the 
length. Higher order terms and terms proportional with other parameters such as density, number of 
lanes, average weather conditions, and frequency of incidents, were not found significant.  

( ) LaMDaMDaa ⋅++⋅+⋅+= ]3[1log]2[]1[]0[σ   (9) 

For the morning peak data, this fits the data very well (Figure 3.8) and does not lead to unwanted 
behaviour outside the range on which it was fitted. This function is selected as our final relation to 
forecast standard deviation based on the elements available from the traffic model. 



3. FORECASTING TRAVEL-TIME RELIABILITY IN ROAD TRANSPORT: A NEW MODEL FOR THE NETHERLANDS – 71  
 

QUANTIFYING THE SOCIO-ECONOMIC BENEFITS OF TRANSPORT — © OECD/ITF 2017 

Figure 3.8.  Mean delay versus standard deviation fitted with a combination of a linear and a logarithmic 
function 

   

Dependence on trip length 

When we look at the estimation result for our final function, we note that the coefficient on length is 
very small (only 0.009 as can be seen from Figure 3.8). One might conclude that the length is not 
important. However, length is also related to mean delay: the longer the route, the more likely it is that 
some congestion occurs. This becomes clear when we divide all data points based on their length. In 
Figure 3.9-left, the 50 shortest routes are displayed as light grey circles, while the longest routes are 
shown as dark grey diamonds. We see that all the light grey circles are on the left of the diagram, while 
the dark grey diamonds are on the right. We have made a linear regression on longest and shortest routes. 
We see that the slope decreases with length as well. This property is also clearly visible when we plot the 
standard deviation per kilometre as a function of mean delay per kilometre (Figure 3.9-right): the slope 
of their linear relation is correlated with length. This can be intuitively understood: if for a long route on 
a certain day, the congestion is worse than normal, traffic might flow better downstream, so any delay 
can be (somewhat) compensated later along the route. This will reduce the variation of the day-to-day 
travel time. 

Figure 3.9.  Variability and delay relations for 250 routes for the morning peak 

 
Note: Mean delay versus standard deviation (left) and mean delay per unit length versus standard deviation per unit length 
(right). Light grey dots indicate the 50 shortest routes (less than 12.6 km) and the light grey line is the linear regression through 
these points. Similarly the dark grey diamonds indicate the 50 longest routes (above 63 km) and the dark grey line is the linear 
regression through these points. 
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Differences between time-of-day periods 

We used the same functional form to analyse the evening peak (16:00 – 18:00) data and the mid-day 
data (10:00 – 15:00), see Table 3.2 for the estimates of the coefficients. Even though the three periods 
have significantly different coefficients (based on an F-test), the functional form fits each data set well. 

For the mid-day period, we did not find a[2]- and a[3]- coefficients that were significantly different 
from zero. Therefore, we tried a fit with these coefficient constrained to zero, effectively turning 
equation (9) into a linear equation. This is understandable since the maximum mean delay for the 
mid-day period is only 10 minutes. Even in the morning peak the observations in Figure 3.10 below a 
mean delay of 10 minutes almost follow a straight line. Note that we kept the a[0] constant though it is 
not significantly different from zero, since we did not want to force the function to go through the point 
with (MD,σ) = (0,0). 
Table 3.2.  Best fit coefficients for the empirical relation between the standard deviation and the mean delay 

(equation 9) for highway routes 

 Morning peak Mid-day period Evening peak Units Coefficient          (t-ratio) Coefficient          (t-ratio) Coefficient          (t-ratio) 

a[0] -0.540 ± 0.186 (-2.9) -0.066 ± 0.051 (-1.3) -0.901 ± 0.172 (-5.3) min. 

a[1] 0.476 ± 0.026 (18.2) 1.034 ± 0.019 (53.1) 0.268 ± 0.017 (16.1)  

a[2] 4.538 ± 0.415 (10.9) -  5.555 ± 0.351 (15.8) min. 

a[3] -0.009 ± 0.003 (-2.7) -  0.011 ± 0.003 (4.0) min./km 

Adj. R2 0.956   0.919   0.960    

Note: for the mid-day period no significant value for the a[2] and a[3] coefficients was found. 

Impact of excluding outliers 

We noted above that the exclusion of the outliers caused a decrease of the average standard deviation 
of 29%. However, excluding outliers also has an impact on the mean delay. So, it is theoretically possible 
that the data before and after exclusion fall on the same line: the exclusions may only cause a shift along 
the line. To test this, we fitted a function on the full data set (no exclusions), but with the correction for 
expected travel time as discussed. The resulting best fit is the dashed line in Figure 3.10, which lies 
roughly 3 minutes above the default (solid) line. From this, we conclude that outliers have more impact 
on the standard deviation than on the mean delay and excluding the outliers has a strong impact on the 
coefficients of the relationship. 

Impact of correcting for travel-time expectation 

The correction for the expected travel time (see the third step in the Data section) influences the 
standard deviation but not the mean delay. So, we expect that without this correction, the empirical 
relation between mean delay and standard deviation would shift upwards. This can indeed be seen from 
Figure 3.10. If no correction is made for expected travel time (dotted line), the curve is located up to 30% 
above the default line. 

We conclude that both the outlier criterion and the travel-time expectation correction both have a 
clear impact on the coefficients (though our best functional form still describes the data well). As such, 
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comparisons of coefficient values between different studies are not very useful unless these studies use 
exactly the same outlier criterion and travel-time expectation correction. 

Figure 3.10.  Results of fits for mean delay versus standard deviation under several choices of the data 
analysis 

 

Results for other roads 

We also fitted the same functional form to our database of 40 routes on other (non-highway) roads. 
Since these routes are small compared to the highway routes (see Table 3.1), we also have relatively 
small mean delays and standard deviations. As a result, only the linear term in equation (9) was found to 
be significant. Figure 3.11 shows the data and the fit for the morning peak. Table 3.3 shows the best fit 
coefficients for all time-of-day periods. Note that insignificant constants were kept in the models. The 
coefficients for the evening peak are significantly different from those for the morning peak. The 
coefficients for the mid-day period are significantly different to those of the evening peak, but not from 
those of the morning peak. Also note that the slope for the morning peak (0.468) is much lower than the 
slope for the same period for short highway routes (1.1935, see Figure 3.9-right). So, the reliability 
relation for other roads is clearly different from that for highways. 

Figure 3.11.  Mean delay versus standard deviation fitted with a linear function 
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Table 3.3.  Best fit coefficients for the empirical relation between the standard deviation and the mean delay 
(equation 9) for other routes 

 Morning peak Mid-day period Evening peak Units Coefficient          (t-ratio) Coefficient          (t-ratio) Coefficient          (t-ratio) 

a[0] 0.049 ± 0.120 (0.4) -0.074 ± 0.049 (-1.5) -0.079 ± 0.106 (-0.7) min. 

a[1] 0.468 ± 0.054 (8.7) 0.534 ± 0.030 (17.6) 0.637 ± 0.044 (14.6)  

a[2] -  - -  min. 
a[3] -  -  -  min. / km 

Adj. R2 0.662   0.891   0.848    

Note: “-” indicates that no significant value was found. 

Policy implications  

Current treatment of reliability in CBA 

Until now, reliability is included in Dutch CBAs using the practical and provisional way as 
developed by Besseling et al. (2004). That means that reliability benefits are included by multiplying the 
travel-time benefits from reduced congestion by a factor of 1.25. This proportionality is based on the 
linkage between congestion reduction and reliability improvements. 

However, this current treatment of reliability in CBA is not useful to evaluate policies that especially 
affect travel-time variability. An approach to reflect the effects of policies that affect travel-time 
variability in CBA will encourage proper considerations of options. Project appraisal will then not only 
offer incentives for policies that reduce the average travel time but also for policies that improve travel-
time variability. 

Better capturing the effects of policies that affect travel-time variability 

The new travel-time reliability forecasting model does not require any adjustments with respect to the 
transport model. It is a separate module that uses outputs from the transport model to forecast the impact 
of infrastructure projects on travel-time variability. It is a so called post-processing module. Its outputs 
will not feed back into the transport model. That means that the reactions of network users to changes in 
reliability are not incorporated in the predicted levels of reliability. 

The empirical relations presented in the previous section were built into this post-processing module. 
Based on a LMS/NRM scenario, this module calculates the value of the reliability indicator for each 
origin-destination pair. However, due to the iterative assignment process in the LMS/NRM, multiple 
routes can be assigned to people travelling between an origin and a destination. Our post-processing 
module repeats this route assignment and stores all routes in each iteration step. Once the final link travel 
times have been calculated, our module loops back to all these routes and calculates the reliability for 
each of them using equation (9) and the coefficients from Tables 3.2 and 3.3. The final value of the 
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reliability indicator for an origin-destination pair is an average of the reliability indicators in each 
iteration step weighted by the flow assigned in that step. 

If a route travels over both highways and other roads, the reliability indicator is calculated for both 
road types separately. The total reliability for this route is the root of the squared sums of these two 
reliability indicators. Implicitly, we have assumed here that travel-time delays on highways are not 
correlated with those on other routes. A (limited) analysis of our data has shown that this correlation is 
indeed small, so this is a reasonable assumption. 

The module also calculates a value for the national (or regional) reliability indicator by adding the 
standard deviations of all origin-destination pairs weighted by their traffic flows. These totals are 
calculated for each time-of-day period and can be added to get a reliability indicator for a whole day, 
using a weight of 2 for both peak values. We analysed 24-hour data to derive that the mid-day period 
should get a weight of 9.5 to get a correct daily total. 

A test run with this new module revealed that in 2004 the reliability indicator (i.e. the summed 
standard deviations over all origin-destination pairs) was 48 400 hours for one hour in the morning peak; 
60% of this originated from highways and 40% from other roads. The corresponding LMS-run showed 
that the total delay for all travellers in one hour in the morning peak was 77 000 hours, so the ratio for the 
(national) reliability to the travel-time delays is 63%. 

The new module clearly makes a distinction between travel-time gains due to shorter routes (e.g. a 
bypass) or due to reduction of congestion. The former does not lead to reliability gains, whereas the latter 
does. If some mild congestion occurs on the bypass, reliability may even deteriorate, while overall travel 
times go down. The new module also takes the exchange of traffic between highways and other roads 
into account. When congestion is reduced on a highway, this may cause diversion of traffic from 
secondary roads which can lead to non-standard amounts of reliability gains and losses due to the 
different relations to mean delay on both types of roads. Also, a lower maximum speed will lead to a 
reduction of mean delays and hence better reliability which is indicative for the more uniform traffic flow 
(though we have not yet tested the size of the effect of this policy with observed data). 

Impact on CBA results 

As a test, a research team from 4Cast simulated the reliability effects of several future infrastructure 
projects with the new reliability forecasting model described in this chapter. The reliability benefits (in 
terms of euro, i.e. the changes in reliability and multiplied by the VTTRS) appeared to be between 15% 
and 60% of the travel-time benefits, though higher and lower values also occurred (depending on the 
project, the time-of-day period and the economic scenario, see Figure 3.12). These numbers are of the 
same order-of-magnitude as the initial rule-of-thumb of adding 25% to the travel-time benefits 
(Besseling, et al. 2004). The range between the projects is mainly caused by the differences in trip length 
and the amount of traffic. 
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Figure 3.12.  Ratio of travel-time benefits and reliability benefits for three projects, each for two variants 
and two economic scenarios 

 
Source: Authors adapted from 4Cast. 

 

Conclusions and future steps 

The most important findings of this chapter are: 

• When fitting functions between reliability and parameters that are available in demand models, 
distinction should be made between variation between 15-minute periods and variation between 
routes as each may be described by a different function. 

• For our data set consisting of 250 routes on Dutch highways for three periods of the day 
(morning peak, evening peak, mid-day), the best empirical relation to describe reliability was an 
expression of the standard deviation as a function of the mean delay, the logarithm of the mean 
delay and the length of the route. Other functional forms that have been described in the 
literature either had much lower adjusted R2 or showed behaviour that was not supported by the 
data. 

• If observed travel times over multiple days are used to compile a travel-time distribution, a 
decision needs to be made whether to exclude outliers and whether to correct for variation in 
travel-time expectation. Consistency with the congestion functions in the demand model and 
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with the method used to determine the valuation of travel-time reliability should be leading in 
this decision. 

• Excluding outliers can have a profound impact on the standard deviation and on the coefficients 
of the empirical relation. In our project, a criterion of three times the standard deviation above 
the mean travel time with a minimum of 150% of the mean separated the visually clear outliers 
from the tail of the standard travel-time distribution. On average, the travel time on 4 out of 
251 working days exceeded this criterion. Excluding them reduced the standard deviation by 
29%. 

• Correcting for variation in travel-time expectation also reduced the standard deviation by another 
12%. This depends on the method used to calculate the expected travel times. Very little research 
is available to support the selection of a method for this. 

• This unreliability model is built into a post-processing module for the national and regional 
transport models. These transport models have not been altered but their outputs are used to 
calculate the changes in the standard deviation of the travel-time distribution due to an 
infrastructure project. 

• The post-processing module calculates the reliability benefits (i.e. the changes in the standard 
deviation expressed in hours and multiplied by the VTTRS) which can be used in a CBA. 

• Better capturing the effects of policies that affect travel-time variability in CBA will encourage 
proper consideration of options. Project appraisal will then not only offer incentives for policies 
that reduce the average travel time but also for policies that disproportionately improve travel-
time variability. 

Future steps 

Reliability will be better embedded in the transport policy-making process by the following concrete 
policy actions. First, the new travel-time reliability forecasting model will be incorporated in the Dutch 
guidelines for CBA. Second, the consequences of policies that especially affect travel-time variability 
will be part of CBA. Attribution of an economic value to travel-time variability recognises that transport 
projects can create more value than they have traditionally realised when they invest to reduce 
congestion if an improvement in reliability is produced independent of a reduction in travel time. Third, 
in order to properly consider such investments in the resource allocation decision process they will be 
included in the investment tradeoff analysis to prioritise, rank and select infrastructure improvement 
projects. And finally, a guideline on also including the consequences of extreme travel times, network 
robustness and vulnerability into the decision making process will be developed. However, a special 
VTTRS to value extreme changes of travel-time variability in the CBA does not exist. 

Better integration of reliability into transport policy making is synthesised into a short- and mid-term 
strategy as discussed below to improve the post-processing reliability model. However, it is 
recommended that these future steps are embedded in a long term strategy (10+ years) to be developed 
for the national and regional models to assess unreliability in CBA. The basis for such a strategy can be 
to identify the set of policy measures for which evaluations are or likely will be required. These policies 
should be matched against the capabilities of the set of modelling tools available. 

Short-term improvements of the post-processing reliability model 

• The reliability model only deals with road transport. However, the national Dutch transport 
model is also capable of forecasting the effects of changes in the average travel times for public 
transport (train and bus/tram/metro). It should be possible to estimate equations explaining the 
standard deviation of travel time for public transport from explanatory variables available in 
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LMS or NRM. At the moment of writing this chapter, KiM works on a project to measure how 
different policies affect travel-time reliability in public transport chains. 

• Dutch highways are well equipped with detector loops providing inputs for the transport model. 
However, network users make trips on other roads as well. The regression line is fitted on 
250 highway routes and 40 routes on other roads. Collecting extra data and expanding the 
database can improve the regression analysis for non-highway routes. 

Long-term improvements of the post-processing reliability model 

• Build a specific database for policies which will increase the travel time but may decrease 
unreliability. These are policies such as changing the maximum speed or ramp metering. Based 
on this database a specific regression line can be fitted. 

• In reality, mode choice, departure time choice and route choice are sensitive to reliability. The 
post-processing reliability model can be extended with a feed-back loop into the transport model 
so that the decisions of the network users are impacted explicitly by changes in reliability. 

• The standard deviation contains several sources of unreliability, namely due to recurrent 
congestion, road works, accidents, unexpected weather conditions, and a random component of 
day-to-day variation in travel times. Extreme events are removed from the data before fitting the 
function. Therefore the model predicts reliability changes without considering extremes. 
Analysing the extreme events, will provide insight in the robustness and vulnerability of the 
network. However, a special VTTRS to value extreme changes of travel-time variability in the 
CBA would need to be developed through additional primary research. 
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Notes 

 
1  Fosgerau (Chapter 2) prefers to use the variance of travel time rather than the standard deviation. In 

his paper, he shows that the variance is theoretically more appropriate for commuters with flexible 
work times. Furthermore, using the variance has the advantage that it is additive over links (provided 
that the travel times on the links are independent). However, for this study we prefer to use the 
standard deviation since (a) it is consistent with the Dutch valuation study, (b) most travellers in the 
peaks are commuters with inflexible work times and (c) the typical link lengths in our study are so 
short that the travel times on adjacent links are certainly correlated. 

2  Extreme travel times are removed from the data before fitting the function. Therefore, our model 
predicts reliability changes without considering these extremes. Analysing extreme events (separately) 
will provide insight in the robustness and vulnerability of the network. 

 Policies may affect the reliability, but also may affect the robustness and the vulnerability of the 
network. Both should be included in a cost-benefit analysis. The tool that we describe in this paper 
only looks at the reliability component without the extreme events. Including the extreme events in 
this or in a separate tool is one of the longer-term improvements of the post-processing reliability 
model. 

3  All estimations in this paper were made using the LFIT algorithm of Numerical Recipes (Press et al., 
1992). 
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