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Introduction 

This essay gives an overview and describes prospects for generating new scientific knowledge from 

disparate datasets, as viewed by four active practitioners from around the globe (Illinois, Arizona, Slovenia 

and Australia). Although artificial intelligence (AI) and machine learning (ML) are central techniques 

employed in the field, the key concepts in this essay are undiscovered public knowledge (UPK) and 

literature-based discovery (LBD). These comprise a variety of situations, including some not yet tackled 

via ML.  

UPK was originally coined by Swanson (1986) and expanded by Davies (1989). It suggests that scientific 

findings, hypotheses and assertions may exist within the published literature without anyone being aware 

of them. They may be undiscovered because no one alive has read the articles (e.g. they were published 

in obscure journals or lack Internet indexing). In other cases, different snippets of evidence or assertions 

may be scattered among multiple documents and need to be pieced together. For example, one article 

may raise a hypothesis that is tested in another, without any one individual being aware the two are related. 

As another example, multiple types of evidence may exist across different studies that address the same 

issue but are not integrated readily with each other (e.g. epidemiologic study vs. case reports); this is in 

contrast to meta-analyses, which attempt to collate comparable studies.  

LBD generally refers to the fascinating possibility that one can create entirely new, plausible and 

scientifically non-trivial hypotheses by combining findings or assertions across multiple documents. If one 

article asserts that “A affects B” and another that “B affects C”, then “A affects C” is a natural hypothesis. 

The potential number of such transitive relations in the literature is astronomical. Thus, the LBD problem 

is to filter or identify which assertions of the type “A affects C” are novel, scientifically plausible, non-trivial 

and sufficiently interesting that a scientist would find them worthy of study. LBD differs from AI data mining 

efforts such as Knowledge Discovery from Databases that use statistics and interestingness1 measures to 
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identify explicitly stated findings or significant associative trends in the data. In contrast, LBD attempts to 

identify unknown knowledge that is implicitly rather than explicitly stated.  

Advances in AI, ML and computational linguistics are key to improving such systems. For example, better 

extraction of entities and relations, and better natural language inference and causality models, will 

improve the precision of “A affects B” and “B affects C” assertions. This, in turn, will greatly help assess 

whether a potential link can be explained in terms of known mechanisms. Advances in machine reading 

(teaching computers to read and comprehend natural language text), and especially “deep learning” neural 

network architectures applied to text, show great potential in identifying assertions in scientific articles and 

implicit relationships.  

What LBD tools are available? 

The first computer-assisted tools for carrying out LBD analyses were the following: 

Arrowsmith 1-node and 2-node search tools (http://arrowsmith.psych.uic.edu) (Swanson and 

Smalheiser, 1997; Torvik and Smalheiser 2007). In the 2-node search, users define two sets of biomedical 

articles (hereby termed literature sets A and C) by carrying out two searches within the PubMed search 

engine. The Arrowsmith software then identifies title words from both literature sets to identify one or more 

connecting terms/phrases (Bi=1, 2, 3, …) in common. These phrases are then ranked according to their 

predicted relevance for linking A and C in a meaningful manner. For each connecting term Bi, the system 

displays the instances of Bi in the A literature next to instances of Bi in the C literature, making it easy to 

see if there is an interesting A - Bi - C relationship. In the 1-node search, the user defines a single literature 

A that studies a given problem (e.g. Alzheimer's disease). The system then identifies disparate literatures 

Ci ranked by how many intermediate terms or concepts they share with A.  

BITOLA (https://ibmi.mf.uni-lj.si/en/node/253) is based on co-occurrences of medical subject headings 

integrated with genetic background knowledge. This makes it especially useful for identifying candidate 

genes (Hristovski, 2005). 

SemBT (http://sembt.mf.uni-lj.si) uses semantic relations extracted from the biomedical literature 

combined with microarray results (microarrays are used in laboratory settings to detect simultaneous 

expressions of thousands of genes). LBD in this case can be used both for microarray results interpretation 

(Hristovski, 2009) and for drug repurposing.  

Mine the Gap! (accessible in https://h2020-minethegap.eu/) is a variant approach in which the user 

specifies a given set of literature, whereupon the software identifies “gaps” within that field. These gaps 

are pairs of topics that separately are studied frequently within the field, yet have never been discussed in 

the same article in that field.  

Influence Search provides direct and indirect search over a graph of influence relations mined from 

English and Portuguese scholarly documents indexed by PubMed and SciELO. Each edge is weighted by 

how frequently its corresponding relation is discussed across documents. It is also weighted as a measure 

of the certainty of the relationship based on the degree of hedging in its description (Hahn-Powell, 

Valenzuela-Escárcega and Surdeanu, 2017; Barbosa et al., 2019).  

Finally, Lion-LBD (https://lbd.lionproject.net) looks for relationships among instances of diseases, genes, 

mutations, chemicals, cancer hallmarks and species mentioned within biomedical articles rather than 

among documents or sets of documents. 

All of these systems are implemented as free, public biomedical web tools. As well, proprietary systems 

include IBM Watson for Drug Discovery and Biovista’s Biolab Experiment Assistant. 

http://arrowsmith.psych.uic.edu/
https://ibmi.mf.uni-lj.si/en/node/253
http://sembt.mf.uni-lj.si/
https://lbd.lionproject.net/
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New and emerging models of LBD 

To date, most research on LBD has come from practitioners in computer science, information science and 

bioinformatics. It has largely dealt with methodological questions that employ the ABiC model. For 

example, should Bi terms be extracted from title, abstract, specific document sections or the full text of 

literatures A and C? Should Bi terms represent text or ontological concepts? How can LBD be modelled 

on knowledge graphs, for example, by predicting which unlinked nodes are likely to become connected in 

the future?  

Emerging approaches extend the ABC model in various ways. For example, instead of A – Bi – C, one 

may wish to create longer paths or chains of assertions (A – B1 -B2 – B3 – C) bridging any two literatures 

or concepts (Hossain et al., 2012). Alternatively, instead of connecting textual artefacts (documents or 

concepts), one may envision connecting investigators to identify potential collaborators (or potential 

reviewers). “Dr Smith” and “Dr Jones”, for example, may not know each other or attend the same meetings. 

However, they may be implicitly linked if they published on similar topics or even co-authored with some 

of the same scientists. If they share certain common interests or attributes, they might be expected to 

collaborate fruitfully, perhaps synergistically, on a particular hypothesis or scientific problem.  

Even more interesting is when the collaborators come from complementary domains. Recently, a 

semantics-based methodology for cross-domain collaboration recommendations has been proposed 

(Hristovski et al., 2015) and later implemented with a graph database (Hristovski et al., 2016). This 

methodology proposes not only pairs of potential collaborators but also an explanation for why such a 

collaboration makes sense. Another approach along these lines is to define research communities, looking 

for links across disparate fields of research (Hahn-Powell, 2018). This would identify knowledge gaps and 

key ideas that can bridge disciplines and foster the kind of collaboration that accelerates scientific progress. 

Early LBD studies focused on identifying novel links that represent potential new hypotheses. However, it 

is increasingly clear that the real goal is not novelty per se but rather finding hypotheses that domain 

scientists will find interesting, non-trivial and worthy of further study. Assertions that represent small 

increments from current knowledge may be very likely to be true. For example, if dexamethasone helps 

patients with COVID-19, then similar steroids may help COVID-19 as well. Yet these assertions are the 

least surprising and, because they are obvious, perhaps the least interesting from the standpoint of 

investigators in the field. Thus, there is an apparent trade-off: the more divergent a predicted hypothesis 

is from current knowledge, the more surprising it is but (all things being equal) the least likely it is to be 

true. On the other hand, previously published findings that were neglected or apparently refuted using the 

methods available at the time may actually represent the raw material for new hypotheses and even new 

paradigms. This is especially true if one looks at them in the light of more recent findings and methods 

(Swanson, 2011; Smalheiser, 2013; Smalheiser and Gomes, 2014; Peng, Bonifield and Smalheiser, 2017).  

The above suggests a need for “interestingness” measures that can automatically score and rank 

hypotheses in terms of their surprisingness and potential impact on science. These would help guide users 

to focus on those that have “bang for the buck”. While no such dataset exists, judgements on aspects of 

“interestingness” could be collected through user interaction with an information retrieval system. These 

judgements could then be used to train a personalised recommendation system that learns to combine 

features derived from knowledge graph structures with user profiles and behaviours (Zhao, Wu and Liu, 

2016; Guo et al., 2020). Such a system could be continuously improved through a virtuous cycle of human-

machine collaboration.  

Future LBD systems may also need to consider radically new approaches in synthesising knowledge that 

assess multiple weak findings across disparate sources. For example, multiple medical case reports 

sometimes publish quite similar findings, albeit in different contexts (Smalheiser, Shao and Yu, 2015). 

Under this scenario, one cannot undertake a conventional meta-analysis. Yet, intuitively, the presence of 

multiple independent reports should point to a real signal among the “noise” of individual cases. In materials 
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sciences, scientific documents commonly report a limited number of material samples being synthesised 

and characterised from non-comparable experiments. Again, conventional meta-analysis is not 

appropriate. Instead, new ways of combining information across disparate contexts are needed (Tshitoyan 

et al., 2019; Szczypiński et al., 2021). 

LBD can be fruitfully integrated with other AI methods, such as neural networks, to provide explanation 

capabilities. In Zhang et al. (2021), several methods for knowledge graph completion (link prediction) using 

neural networks were used for drug repurposing for COVID-19. The medical doctor responsible for the 

evaluation may not always find it easy to directly interpret the rationales behind the proposed drug 

repurposing. In these cases, LBD’s 2-node searches (such as those provided by the Arrowsmith system) 

can be used to provide explanations for paths in the knowledge graph between the drugs and COVID-19.  

How can informatics scientists best collaborate with bench scientists, especially 

in biology and medicine?  

Many biomedical hypotheses emerging from LBD analyses have been published. The earliest examples 

suggested that magnesium supplementation could prevent or treat migraine headaches, and that fish oil 

could treat Raynaud’s disease. Indeed, the entire field of drug repurposing owes its underlying strategy to 

LBD. For example, one may rank drugs according to whether they elicit changes in gene expression that 

occur in directions opposite to those that occur in a given disease. LBD or bioinformatics practitioners 

themselves carried out most of the published analyses. Roughly 25 specific hypotheses have appeared 

among the Swanson-Smalheiser group, the Hristovski-Rindflesch group, the Wren-Garner group and a 

few others. Some have been experimentally tested and confirmed. As well, several independent 

biomedical investigators have employed Arrowsmith software to generate and assess hypotheses related 

to their laboratory studies (Kell, 2009; Manev and Manev, 2010). 

The problems that LBD tools are solving (generating potentially novel hypotheses) are inherently more 

difficult and specialised than searching the research literature (as done by PubMed and Google Scholar). 

This may partially explain their limited use by the biomedical community to date. As well, LBD tools may 

need to become more user-friendly, fast responding and interactive. Perhaps they could display only the 

few best hypotheses generated by these systems that need to be investigated and evaluated. The tools 

should also be able to explain why the proposed novel hypotheses are attractive. In other words, 

explainability is also essential for wider adoption. Finally, LBD tools need to be publicly accessible as web-

based tools (not merely code archived on Github) that operate over a continuously updated document 

collection.  

There are also social and organisational obstacles to wider LBD adoption by the biomedical community. 

Most LBD research is published and presented at venues attended by biomedical informaticians, who are 

not the real end-users. Conversely, the biomedical curriculum does not train students to search 

systematically for new hypotheses. Moreover, in general, many investigators have little expertise or formal 

training with computer programming, data provenance issues and so forth. Investigators design and 

conduct their experiments (or should do) in collaboration with statisticians. In the same way, LBD analyses 

should be undertaken in dialogue or partnership between biomedical end-users and informatics 

consultants in response to specific research questions. For example, what molecular pathways are most 

promising to study in Alzheimer's disease?  

Extending LBD analyses beyond text 

Besides linking assertions or findings in articles and other documents, the next-generation LBD systems 

are likely to use information in non-natural language forms. These could include numerical tables, charts 
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and figures, programming codes, microarrays, next-generation sequencing results, phenotypes, clinical 

data, etc. This is in parallel with the increasing awareness that different scientific fields communicate 

differently, implying diverse emphases on various formats of information (National Academies of Sciences, 

Engineering and Medicine, 2017). In fact, progress is being made in this direction that makes non-textual 

information more amenable to text mining (Pyarelal et al., 2020; Suadaa et al., 2021).  

Prospects for LBD accelerating scientific progress outside biomedicine 

An increasing number of LBD applications are being reported outside of biomedicine. In materials 

sciences, a group at the Lawrence Berkeley National Laboratory (Tshitoyan et al., 2019) recently 

demonstrated an LBD-style computer algorithm for discovering new materials. The algorithm uses static 

word embeddings to discover latent associations between an existing material (e.g. a crystal structure) 

and its previously unexplored thermoelectric applications. Word embeddings are vector representations of 

words built from millions of materials science publications. These vector representations can capture 

complex relationships among materials concepts without requiring explicit chemical knowledge to be 

specified a priori (e.g. periodic table). Using this method, computers can be used to automatically 

recommend new or existing materials for novel applications long before their discoveries. This saves 

money and time given that conventional materials engineering approaches typically rely on slow and 

arduous experimentations to discover or repurpose new materials (Szczypiński et al., 2021). As an 

example, researchers at MIT recently demonstrated the discovery time of new materials can be 

dramatically reduced from 50 years by conventional analytical methods to merely 5 weeks with the help of 

artificial neural networks (Janet et al., 2020). 

Figure 1. The distribution of literature-based discovery research publications according to their 
alignment with selected UN Sustainable Development Goals (1989-2021) 

 

Note: Bars indicate the number of publications containing the keyword “literature-based discovery” published between 1989 and 2021. 

Source: www.dimensions.ai (accessed on 9 October 2021). 

Figure 1 illustrates the far-reaching potentials of LBD in terms of the UN Sustainable Development Goals 

(SDGs). LBD researchers have previously attempted analyses on 10 of 17 goals. However, Figure 1 also 

points to a problem: less than 6% of all LBD publications (108 of 1 928) can be mapped to at least one 

SDG. Limitations of bibliographic indexing aside, this may suggest that the practicality of new LBD methods 
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and algorithms needs to be better contextualised within real-world problems (Mejia and Kajikawa, 2021). 

Doing so could help increase the uptake of LBD by the scientific and non-scientific community at large.  

Future developments of AI-driven knowledge creation tools must be accompanied by the increasing 

availability of open research data. Platforms such as Figshare (https://figshare.com), Dryad 

(https://datadryad.org/stash) and Zenodo (https://zenodo.org) provide open access to research data as 

figures, datasets, images or videos. Cloud-based bibliography management solutions (Mendeley, Zotero) 

and academic social networking sites (ResearchGate, Academia.edu) could also open exciting possibilities 

for more author and community-centric LBDs. Finally, catalysts can also be found in public data initiatives 

such as The Australian Research Data Commons (https://researchdata.edu.au), the US Government’s 

Open Data (https://www.data.gov) and the EU ORD Pilot (https://data.europa.eu). 

Conclusion 

UPK and LBD are simple, intuitive concepts that have profound implications for the philosophy and practice 

of science. Investigators now realise that publications are not simply archives of prior studies. They can 

also be a fertile raw material for making new and testable hypotheses that represent potential discoveries. 

LBD techniques work hand in hand with AI methods in machine learning, ontologies, knowledge graphs 

and computational linguistics, which are themselves making rapid progress. Thus, LBD analyses should 

continue to expand in biomedicine, the physical and social sciences, and even the humanities. 

The greatest challenge is to integrate LBD analyses into real-life scientific workflows. There is no “killer 

app” akin to Google Scholar used by the general scientific community on a daily basis. Instead, tools are 

more specialised and require some training, not unlike the training required to use statistics packages or 

computer programming environments. Perhaps the best way forward is not to require bench and clinical 

investigators to become LBD experts themselves but rather to create partnerships and collaborations with 

informatics consultants fluent with LBD tools. One might also envision holding workshops and conferences 

that address specific problems (e.g. climate change) and carry out brainstorming in conjunction with 

domain experts assisted by LBD analyses. Maybe, in the not-so-distant future, AI software agents could 

serve the role of an intermediary between LBD tools and their intended users.  
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