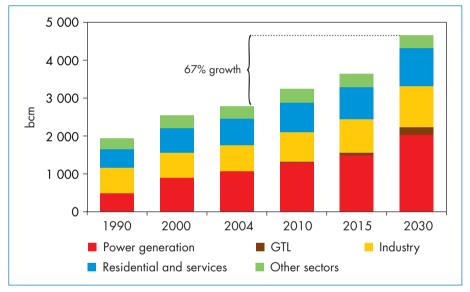
GAS MARKET OUTLOOK

HIGHLIGHTS

- Primary gas consumption increases in all regions over the period 2004-2030 in the Reference Scenario, from 2.8 trillion cubic metres in 2004 to 3.6 tcm in 2015 and 4.7 tcm in 2030. Globally, demand grows by an average of 2% per year well down on the 2.6% rate of 1980-2004 and slightly below the rate projected in WEO-2005. The biggest increase in volume terms occurs in the Middle East, though demand rises at a faster rate in China, India and Africa. OECD North America and Europe remain the largest markets in 2030. The power sector accounts for more than half of the increase in global primary gas demand.
- In aggregate, annual world gas production expands by almost 1.9 tcm, or two-thirds, between 2004 and 2030. The Middle East and Africa contribute most to this increase. Output also increases quickly in Latin America and developing Asia. Europe is the only region to experience a drop in output between now and 2030.
- Inter-regional gas trade expands even faster than output, because of the geographical mismatch between resource endowment and demand. The main gas-consuming regions become increasingly dependent on imports. In absolute terms, the biggest increases in imports occur in Europe and North America. LNG accounts for most of the increase in global inter-regional trade.
- The Middle East and Africa provide more than two-thirds of the increase in global inter-regional exports over the *Outlook* period. The bulk of the exports from these two regions goes to Europe and the United States. Africa overtakes the transition economies, including Russia, as the largest regional supplier to Europe. There are doubts about whether Russia will be able to raise production capacity fast enough to even maintain current export levels to Europe and to start exporting to Asia.
- Cumulative investment in gas-supply infrastructure amounts to \$3.9 trillion over the period 2005-2030. Capital needs are highest in North America, where most spending goes simply to maintaining current capacity. The upstream absorbs 56% of global spending. Most of the investment to 2010 is already committed. Thereafter, it is far from certain that all the investment needed will, in fact, occur. A particular concern is whether the projected increase in exports in some regions, especially the Middle East, is achievable in light of institutional, financial and geopolitical factors and constraints.

Demand


Primary gas consumption is projected to increase in all regions over the next two-and-a-half decades. Globally, demand grows by an average of 2% per year from 2004 to 2030 – well down on the rate of 2.6% per year of 1980-2004 and slightly below the rate projected in *WEO-2005*. Demand grows at the fastest rates in Africa, the Middle East and developing Asia, notably China. The biggest increase in volume terms occurs in the Middle East, driven by demand from the power and petrochemical sectors. Nonetheless, OECD North America and Europe remain the largest markets in 2030 (Table 4.1). The share of gas in the global primary energy mix increases marginally, from 21% in 2004 to 23% in 2030. Our gas-demand projections in most regions have been scaled down since the last edition of the *Outlook*, mainly because the underlying gas-price assumptions have been raised and because of growing concerns about the security of imported gas supplies.


	1980	2004	2010	2015	2030	2004- 2030*
OECD	959	1 453	1 593	1 731	1 994	1.2%
North America	659	772	830	897	998	1.0%
United States	581	626	660	704	728	0.6%
Canada	56	94	109	120	151	1.8%
Mexico	23	51	62	74	118	3.3%
Europe	265	534	592	645	774	1.4%
Pacific	35	148	171	188	223	1.6%
Transition economies	432	651	720	770	906	1.3%
Russia	n.a.	420	469	503	582	1.3%
Developing countries	121	680	932	1 143	1 763	3.7%
Developing Asia	36	245	337	411	622	3.7%
China	13	47	69	96	169	5.1%
India	1	31	43	53	90	4.2%
Indonesia	6	39	56	65	87	3.2%
Middle East	36	244	321	411	636	3.7%
Africa	14	76	117	140	215	4.1%
North Africa	13	63	88	104	146	3.3%
Latin America	36	115	157	180	289	3.6%
Brazil	1	19	28	31	50	3.8%
World	1 512	2 784	3 245	3 643	4 663	2.0%
European Union	n.a.	508	560	609	726	1.4%

Table 4.1: World Primary Natural Gas Demand in the Reference Scenario (bcm)

* Average annual growth rate.

The power sector accounts for more than half of the increase in primary gas demand worldwide (Figure 4.1). Its use of gas increases by 2.5% per year from 2004 to 2030. In many regions, gas is still preferred to other generation-fuel options – particularly for mid-load – because of its cost competitiveness and its environmental advantages over other fossil fuels. Distributed generation, which is expected to play an increasingly important role in power supply, and the shorter lead times and lower costs of building efficient gas-fired combined-cycle gas-turbines also favour the use of gas. In absolute terms, gas demand in the power sector increases most in the Middle East.

In line with previous projections, gas-to-liquids (GTL) plants are expected to emerge as a significant new market for gas. Global GTL demand for gas is projected to increase from a mere 8 bcm in 2004 to 29 bcm in 2010, 75 bcm in 2015 and 199 bcm in 2030. In 2006, a new 34-kb/d plant called Oryx, built by Qatar Petroleum and Sasol in Qatar, was commissioned. This doubled existing capacity at two small plants in South Africa and Malaysia. Several other plants are under construction or planned, including a 95-kb/d facility in Nigeria due on stream in 2008-2009 and an expansion of the Oryx plant.¹ Much of the gas used by GTL plants is for the conversion process, which is extremely energy-intensive.

1. See Chapter 12 for more details on near-term GTL investment plans.

113

The long-term rate of increase in GTL production will hinge on reduced production costs, lower energy intensity, the ratio of gas to oil prices, the premium available for high-quality GTL fuels over conventional products and the economics of liquefied natural gas projects, which compete with GTL for use of available gas.

Final gas consumption grows markedly less rapidly than primary gas use – by 1.8% a year in industry and 1.4% in the residential, services and agricultural sectors. Final consumption slows in the OECD because of saturation effects, sluggish output in the heavy manufacturing sector and modest increases in population. Demand grows more strongly in developing countries and transition economies along with rising industrial output and commercial activity. But residential gas use nonetheless remains modest compared with OECD countries, because incomes are often too low to justify the investment in distribution infrastructure. End-use efficiency gains in the transition economies also temper the growth in residential gas demand. Some oil-producing developing countries continue to encourage switching to gas in order to free up more oil for export.

Supply

Resources and Reserves

Gas resources are more than sufficient to meet projected increases in demand to 2030. Proven reserves amounted to 180 trillion cubic metres at the end of 2005, equal to 64 years of supply at current rates (Cedigaz, 2006). Were production to grow at the 2% annual rate projected in the Reference Scenario, reserves would last about 40 years. Close to 56% of these reserves are found in just three countries: Russia, Iran and Qatar. Gas reserves in OECD countries represent less than a tenth of the world total (Figure 4.2).

Worldwide proven gas reserves have grown by more than 80% over the past two decades, with large additions being recorded in Russia, Central Asia and the Middle East. Much of this gas has been discovered while exploring for oil. In recent years, the larger share of reserve additions have come from upward revisions to reserves in fields that have already been discovered and are undergoing appraisal or development. As with oil, the gas fields that have been discovered since the start of the current decade are smaller on average than those found previously.

Ultimately recoverable remaining gas resources, including proven reserves, reserve growth and undiscovered resources, are considerably higher than reserves alone. According to the US Geological Survey, they could total 314 tcm in a mean probability case (USGS, 2000). Cumulative production to date amounts to only around 15% of total resources.

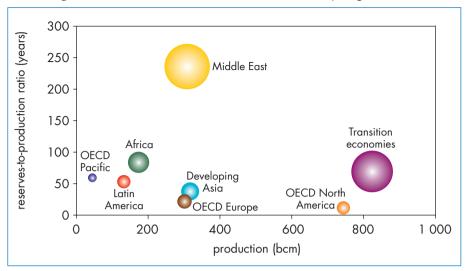


Figure 4.2: Proven Gas Reserves and Production by Region, 2005

Note: The size of each bubble indicates the size of reserves at the end of 2005. Source: Cedigaz (2006).

Production

Projected trends in regional gas production in the Reference Scenario generally reflect the relative size of reserves and their proximity to the main markets.² Production grows most in volume terms in the Middle East and Africa (Figure 4.3). Most of the incremental output in these two regions will be exported, mainly to Europe and North America. Output also grows quickly in Latin America, where Venezuela emerges as an important supplier to North America and possibly Europe too. Output is expected to grow less rapidly in Russia, despite the region's large reserves: much of that gas will be technically difficult to extract and transport to market. There are also doubts about how much investment will be directed to developing reserves in the transition economies (see below). Other developing Asia sees slower growth, as Indonesia struggles to develop its reserves for export to other countries in the region. Europe is the only region which experiences a drop in output between now and the end of the projection period, as North Sea production peaks early in the next decade and gradually declines thereafter. In aggregate, annual world production expands by almost 1.9 tcm, or two-thirds, between 2004 and 2030.

^{2.} They also take into account special factors, including depletion policies, development costs, geopolitical considerations and the use of gas for reinjection to boost oil recovery.

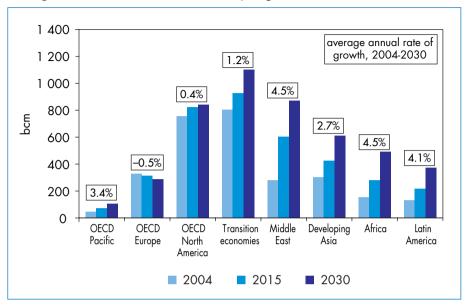


Figure 4.3: Natural Gas Production by Region in the Reference Scenario

Most natural gas supplies will continue to come from conventional sources. The share of associated gas is expected to fall progressively, as more nonassociated fields are developed to meet rising demand – despite a further reduction in the amount of associated gas flared. Several countries, especially in the Middle East and Africa, are implementing programmes to reduce gas flaring. Around 150 bcm of gas is flared each year, mostly in the Middle East, Nigeria and Russia (IEA, 2006b; World Bank, 2006). Non-conventional gas production, including coal-bed methane (CBM) and gas extracted from low permeability sandstone (tight sands) and shale formations (gas shales), increases significantly in North America. The United States is already the biggest producer of non-conventional gas, mainly tight sands gas and CBM from the Rocky Mountains. Together, they account for about one-quarter of total US gas output. In most other regions, information on the size of nonconventional gas resources is sketchy. In some cases, there is no incentive to appraise these resources, as conventional gas resources are large.

In general, the share of transportation in total supply costs is likely to rise as reserves located closest to markets are depleted and supply chains lengthen. Technology-driven reductions in unit production and transport costs could, however, offset the effect of distance on total supply costs to some extent. Pipelines will remain the principal means of transporting gas in North America, Europe and Latin America. Yet LNG is set to play an increasingly important role in gas transportation worldwide over the projection period, mainly to supply Asia-Pacific and Atlantic Basin markets.

Inter-Regional Trade

The geographical mismatch between resource endowment and demand means that the main gas-consuming regions become increasingly dependent on imports (Table 4.2). In volume terms, the biggest increase in imports is projected to occur in OECD Europe. Imports in OECD Europe jump by 280 bcm between 2004 and 2030, reaching almost 490 bcm – equal to about two-thirds of inland consumption. North America, which is largely selfsufficient in gas at present, emerges as a major importer. By 2030, imports – all of which are in the form of LNG - meet 16% of its total gas needs. Chinese gas imports also grow from around 1 bcm in 2004 to 56 bcm by 2030. The country's first LNG terminal, with a capacity of 3.7 million tonnes (6 bcm) per year was commissioned in 2006. Nonetheless, gas still meets only 5% of Chinese energy needs by 2030, up from 3% today.

The Middle East and Africa account for 72% of the increase in global exports over the Outlook period. The bulk of the exports from these two regions goes to Europe and the United States (Figure 4.4). Africa overtakes the transition economies, including Russia, as the largest regional supplier to Europe. In light of current investment plans, there are doubts about whether Russia will be able to raise production fast enough to maintain current export levels to European markets given rising domestic needs (IEA, 2006b). Russia, Central Asia, Australia and the Middle East emerge as new exporters of gas to China during the projection period. Russia is also expected to begin exporting gas to OECD Asia before 2030.

Gas continues to be traded on a largely regional basis, as there are few physical connections now between the main regional markets of North America, Europe, Asia-Pacific and Latin America. But these markets are set to become more integrated as trade in LNG expands. This will open up opportunities for arbitrage, leading to a degree of convergence of regional prices. LNG accounts for almost 70% of the increase in inter-regional trade (Figure 4.5). Exports of LNG grow from 90 bcm in 2004 to 150 bcm in 2010 and 470 bcm in 2030. Much of the new liquefaction, shipping and regasification capacity that is due to come on stream by 2010 is either already being built or is at an advanced planning stage. Total liquefaction capacity worldwide would double between end-2005 and 2010, from 178 Mt (242 bcm) per year to 345 Mt (470 bcm) if all the projects under development are completed on time, though some will undoubtedly be delayed or cancelled.³ North America is expected to see the biggest increase in LNG imports over the whole projection period (Box 4.1).

© OECD/IEA, 2006

^{3.} See Chapter 12 for a detailed near-term analysis of LNG and pipeline investment.

		2004		2015		2030
	bcm	% of inland gas consumption**	bcm	% of inland gas consumption**	bcm	% of inland gas consumption**
OECD	-328	22.6	-526	30.4	-764	38.3
North America	-18	2.3	-77	8.6	-159	15.9
Europe	-214	40.1	-333	51.7	-488	63.0
Pacific	-96	65.0	-116	61.3	-117	52.7
OECD Asia	-109	93.5	-145	96.7	-174	97.2
OECD Oceania	13	29.7	29	40.3	57	53.7
Transition economies	145	18.2	152	16.5	190	17.3
Russia	202	32.7	194	27.8	222	27.7
Developing countries	183	21.2	374	24.7	574	24.6
Developing Asia	60	20.0	11	2.7	-15	2.4
China	0	0.0	-27	27.6	-56	33.3
India	$\tilde{\mathcal{C}}$	9.7	-10	19.3	-27	30.1
Middle East	40	14.4	189	31.5	232	26.7
Africa	70	45.3	137	49.4	274	56.0
Latin America	13	10.0	37	17.0	82	22.2
World	413	14.8	634	17.4	936	20.1

Table 4.2: Inter-Regional* Natural Gas Trade in the Reference Scenario

* Trade between WEO regions only. See Annex C for regional definitions.

** Production for exporters.

Note: Positive figures denote exports; negative figures imports.

© OECD/IEA, 2006

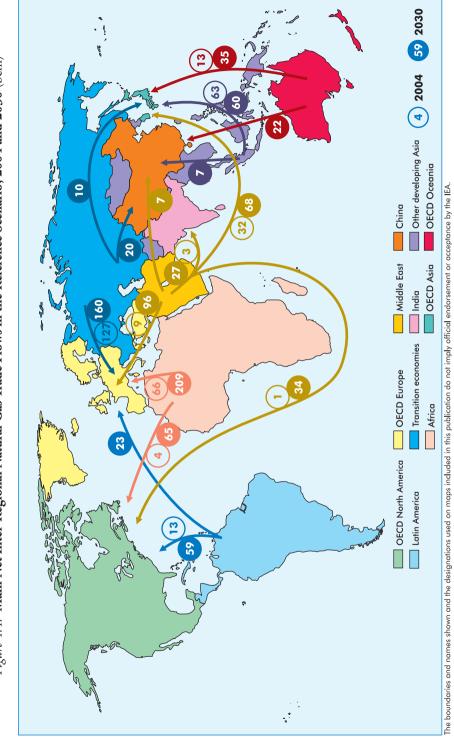


Figure 4.4: Main Net Inter-Regional Natural Gas Trade Flows in the Reference Scenario, 2004 and 2030 (bcm)

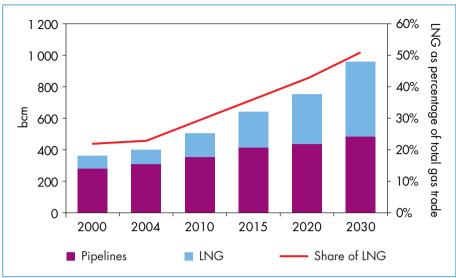
Box 4.1: LNG Set to Fill the Growing US Gas-Supply Gap

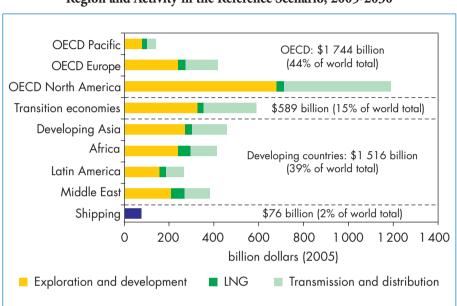
The roller-coaster rise of US natural gas prices in recent years bears testimony to the shifting balance of gas supply and demand. Average monthly well-head prices peaked at almost \$11/MBtu in October 2005 in the wake of Hurricane Katrina, sliding to only \$6.50 by March 2006 and remaining below \$7 for most of the time through to July. The ratio of gas to oil prices is now at its lowest level since early 2000. The main reason is that rising prices since the end of the 1990s have choked off demand - particularly in the chemicals and power sectors. Warmer weather in the winter of 2005-2006 also curtailed demand. Higher prices have, by contrast, been much less effective in stimulating indigenous output, despite increased drilling: marketed production in 2005 would barely have increased had Katrina not occurred, even though the number of gas wells drilled reached almost 26 000 - an increase of 28% on 2004 and almost two-thirds on 2000. In fact, output in 2005 fell to its lowest level since 1992. Increased imports of LNG have made good most of the shortfall, with piped gas imports from Canada rising only modestly.

The diminishing additions to net capacity from increased drilling reflect the maturity of conventional gas basins, as drilling focuses on smaller and smaller pockets of gas and as decline rates at producing fields and wells gather pace. Raising US production in the long term will undoubtedly call for a shift in drilling to new basins, including non-conventional deposits. One of the most prospective areas is the Alaskan North Slope, but development of the region's vast gas reserves will require the construction of a pipeline system to connect with the existing systems in British Columbia and Alberta in Western Canada that export gas to the United States. A 40-50 bcm/year pipeline to ship gas from the North Slope, proposed by producers BP, ConocoPhillips and ExxonMobil, is assumed to be commissioned after 2015.

Supply from indigenous sources is nonetheless not expected to keep pace with demand over the projection period. We expect total US gas production to level off after 2015, leading to higher imports – mostly in the form of LNG. Five regasification terminals are under construction, another 12 projects have been approved by the national authorities and dozens more have been proposed. Local opposition may prevent some of these projects from going ahead. The terminals now being built will, alone, add about 65 bcm/year of capacity by 2010 to the 60 bcm/year of capacity at the country's five existing terminals. If all the approved projects go ahead, capacity would exceed 200 bcm/year.

Sources: IEA databases; EIA/DOE online databases (www.eia.doe.gov); IEA (2006a).




Figure 4.5: World Inter-Regional Natural Gas Trade by Type in the Reference Scenario

Investment

Cumulative investment in gas-supply infrastructure, including upstream facilities, liquefaction plants, LNG tankers and regasification terminals, transmission pipelines and storage facilities, and distribution networks, is projected to amount to \$3.9 trillion (\$151 billion per year) in the Reference Scenario over the period 2005-2030. Capital needs are highest in OECD North America, where demand increases strongly and where construction costs are high (Figure 4.6). The upstream absorbs 56% of total spending. Investment in new transmission pipelines and in extending existing distribution networks amounts to around \$1.4 trillion over the period 2005-2030.

Decisions on the investment in gas-supply capacity additions that will come on stream by the end of the current decade have already been taken. So the amount of capacity that will be available by 2010 to meet the rise in demand that we project is known with a reasonable degree of certainty. The analysis of Chapter 12 suggests that there will be enough supply capacity to meet projected demand by then. However, it is far from certain that all the investment needed *beyond 2010* will in fact occur. As with oil, the opportunities and incentives to invest are a major source of uncertainty. Environmental policies and not-in-my-backyard resistance may impede the

construction of upstream and downstream facilities and push up their cost, especially in OECD countries. On the other hand, technological developments could open up new opportunities for investment and help lower costs in the longer term. Chapter 3 outlines potential barriers to upstream investment, affecting both oil and gas development.

Figure 4.6: Cumulative Investment in Gas-Supply Infrastructure by Region and Activity in the Reference Scenario, 2005-2030

A particular concern is whether the high rates of increase in exports projected for some regions, especially the Middle East, are achievable in light of institutional, financial and geopolitical factors and constraints. A small number of countries are expected to provide the bulk of the gas to be exported, mainly as LNG. If problems were to arise within these countries or between these countries and importers, it would be less likely that all the required investments in export-related infrastructure would be forthcoming. The availability of LNG carriers and trained crews may also constrain investment in LNG chains. Any deferral of upstream oil investment, analysed in Chapter 3, would also reduce associated gas production.

The future rate of investment in Russia's gas industry is a particularly critical uncertainty. The bulk of Russia's gas production comes from three super-giant fields – Urengoy, Yamburg and Medvezhye – which are declining at a combined rate of 20 bcm per year (IEA, 2006b). Production at a fourth super-

giant, Zapolyarnoye, which came on stream in 2001, has already peaked at 100 bcm per year. Enormous investments are needed to develop new fields in deeper strata and/or in the Arctic region and other regions where reserves are expensive to develop, simply to compensate for the depletion at the old supergiants. Gazprom, which produces 90% of Russia's gas, recently announced an increase in its capital spending to almost \$13 billion per year, but this is still below the \$17 billion per year that we estimate the Russian gas industry will need to spend on average over the projection period. Moreover, much of Gazprom's spending is being directed at foreign acquisitions and export infrastructure, rather than the domestic network and the upstream sector. One relatively low-cost option for augmenting supplies would be to allow oil companies and independent gas companies, which could sharply increase their marketed gas output, to gain access to Gazprom's network. Reducing waste in domestic consumption would free up more gas for export. The development of the Shtokman field in the Barents Sea and the Bovanenskoye field in Yamal, announced in October 2006, would also increase export availability.

Another source of uncertainty concerns the possibility of major gas-exporting countries coordinating their investment and production plans in order to avoid surplus capacity and to keep gas prices up. The Algerian national oil and gas company, Sonatrach, and Russia's Gazprom recently signed a memorandum of understanding on cooperation in upstream activities – a move that has raised concerns among European gas importers about its implications for competition and prices.

Investment in downstream gas infrastructure in consuming countries – including transmission pipelines, storage facilities and distribution networks – will hinge on appropriate regulatory frameworks, as much of the capital will have to come from the private sector. This is the case in many developing countries, where publicly-owned gas companies face difficulties in raising sufficient funds. Investment prospects are more secure for domestic downstream projects in OECD countries, particularly those that involve the extension or enhancement of existing pipeline networks. This type of investment is usually considered to be relatively low-risk, particularly where demand trends are reasonably stable and predictable and where returns are protected by the regulator through explicit price controls. The returns that can be made on such investments usually depend to a large extent on price controls. Most downstream gas transmission and distribution companies operating in regulated markets are also well-placed to obtain finance for new infrastructure investments.

Pricing policies are critical to incentives to invest in gas networks. The allowed rate of return is generally low relative to the average return on investment in other industries, reflecting the lower level of risk – especially where the

investment is incremental and where the regulatory framework provides a high level of assurance to the investor that he will be able to recover his costs through regulated tariffs. There is nonetheless a danger that the regulator may fix the allowed rate of return too low, which can discourage investment and create bottlenecks. In OECD countries, regulated tariffs are generally set so as to cover the full cost of supply. In some cases, the regulatory regime may incorporate incentives for utilities to reduce costs – an approach pioneered in Great Britain. In the vast majority of non-OECD countries, price ceilings that keep retail prices below the full long-run marginal cost of supply can impede the capacity of gas utilities – whether private or public – to invest in expanding and maintaining the network (see the discussion of subsidies in Chapter 11). This is a major problem in Russia and several other transition economies.

PART A THE REFERENCE SCENARIO

PART B THE ALTERNATIVE POLICY SCENARIO

PART C FOCUS ON KEY TOPICS

ANNEXES

KEY ASSUMPTIONS	
GLOBAL ENERGY TRENDS	2
OIL MARKET OUTLOOK	3
GAS MARKET OUTLOOK	4
COAL MARKET OUTLOOK	5
POWER SECTOR OUTLOOK	6
MAPPING A NEW ENERGY FUTURE	7
ASSESSING THE COST-EFFECTIVENESS OF ALTERNATIVE POLICIES	8
DEEPENING THE ANALYSIS: RESULTS BY SECTOR	9
GETTING TO AND GOING BEYOND THE ALTERNATIVE POLICY SCENARIO	10
THE IMPACT OF HIGHER ENERGY PRICES	11
CURRENT TRENDS IN OIL AND GAS INVESTMENT	12
PROSPECTS FOR NUCLEAR POWER	13
THE OUTLOOK FOR BIOFUELS	14
ENERGY FOR COOKING IN DEVELOPING COUNTRIES	15
FOCUS ON BRAZIL	16

ANNEXES

© OECD/IEA, 20

Foreword	3
Acknowledgements	5
List of Figures	22
List of Tables	29
List of Boxes	33
Summary and Conclusions	37
Introduction	49

Part A: The Reference Scenario

51

Key Assumptions	53
Highlights	53
Government Policies and Measures	54
Population	55
Macroeconomic Factors	57
Energy Prices	59
Technological Developments	63

65
65
66
66
68
70
71
71
73
75
78

1

2

1 М. ...1. 1 (

Oil Market Outlook	85
Highlights	85
Demand	86
Supply	88
Resources and Reserves	88
Production	91
Trade	100
Investment	102
Implications of Deferred Upstream Investment	107

4	Gas Market Outlook	111
	Highlights	111
	Demand	112
	Supply	114
	Resources and Reserves	114
	Production	115
	Inter-Regional Trade	117
	Investment	121
5	Coal Market Outlook	125
	Highlights	125
	Demand	126
	Reserves and Production	127
	Inter-Regional Trade	131
	Coal Supply Costs and Investment	133
6	Power Sector Outlook	137
	Highlights	137
	Electricity Demand Outlook	138
	Power Generation Outlook	139
	Energy-Related CO ₂ Emissions from Power Generation	144
	The Economics of New Power Plants	145
	Capacity Requirements and Investment Outlook	147
	Power Generation Investment Trends in the OECD	150
	Investment Trends in Developing Countries	153
Part E	: The Alternative Policy Scenario	159
7	Mapping a New Energy Future	161
	Highlights	161
	Background	162
	Why an Alternative Policy Scenario?	162
	Methodology	164
	Policy Assumptions	165
	Energy Prices and Macroeconomic Assumptions	170
	Technological Developments	170
	Global Energy Trends	173
	Primary and Final Energy Mix	173
	Energy Intensity	177
	Investment and Fuel Expenditures	178
	Oil Markets	178
	Demand	178

Supply	179
Inter-Regional Trade	181
Gas Markets	182
Demand	182
Production and Trade	183
Coal Markets	184
Demand	184
Production and Trade	186
Energy Security in Importing Countries	186
Energy-Related CO ₂ Emissions	188
Assessing the Cost-Effectiveness of Alternative Policies	193
Highlights	193
Investment in Energy-Supply Infrastructure	
and End-Use Equipment	194
Overview	194
Investment along the Electricity Chain	196
Demand-Side Investment	<i>19</i> 8
Supply-Side Investment	202
Implications for Energy Import Bills and Export Revenues	203
Implications for Consumers	205
Barriers to Investment in End-Use Energy Efficiency	210
Deepening the Analysis: Results by Sector	213
Highlights	213
Power Generation	213
Summary of Results	214
Electricity Mix	216
Policy Assumptions and Effects	221
Transport	222
Summary of Results	222
Road Transport	224

Policy Assumptions and Effects

Policy Assumptions and Effects

Residential and Services Sectors

Aviation

Summary of Results

Summary of Results Policy Overview

Industry

224

231

234

234

237

241 *241*

246

18

Getting to and Going Beyond the Alternative Policy Scenario	249
Highlights	249
Making the Alternative Policy Scenario a Reality <i>Identifying Policy Priorities</i>	250 250
Hurdles to Policy Adoption and Implementation	253
Going Beyond the Alternative Policy Scenario	256
Achieving the BAPS Goal	256
Implications for Energy Security	262
Beyond 2030: the Need for a Technology Shift	262
Part C: Focus on Key Topics	267
The Impact of Higher Energy Prices	269
Highlights	269
Introduction	270
Energy Price Trends and Relationships	270
International Prices	270
Final Prices to End Users	275
Quantifying Energy Subsidies	277
Impact of Higher Energy Prices on Demand	282
Energy Demand Trends since Prices Started Rising	282
Responsiveness of Energy Demand to Price Changes	283
Explaining Recent Trends in Energy Demand	289
Price Sensitivity Analysis	295
Macroeconomic Impact of Higher Energy Prices	297
How Higher Energy Prices Affect the Macroeconomy	297
Quantifying the Recent Shift in the Terms of Trade	299
Simulating the Macroeconomic Effects of Higher Energy Prices	301
Explaining Macroeconomic Resilience to Higher Energy Prices	306
Energy Policy Implications	313
Current Trends in Oil and Gas Investment	315
Highlights	315
Overview	316
Exploration and Development	321
Investment Trends	321
Impact of Cost Inflation on Upstream Investment	327
Implications for Oil and Gas Production Capacity	331
Oil Refining	335
Liquefied Natural Gas Facilities	336
Gas-to-Liquids Plants	340
Oil Sands and Extra-Heavy Oil	341
Investment beyond the Current Decade	341

Prospects for Nuclear Power	343
Highlights	343
Current Status of Nuclear Power	344
Renewed Interest in Nuclear Power	344
Nuclear Power Today	346
Historical Development	348
Policy Overview	351
Nuclear Power Generation	351
Nuclear Fuel and Waste Management	356
Proliferation and International Conventions	357
Outlook for Nuclear Power	360
Reference Scenario	361
Alternative Policy Scenario	361
Nuclear Power Economics in Competitive Markets	364
Generating Costs under Different Discount Rate Assumptions	364
Sensitivity Analysis of Nuclear Power Generating Costs	368
Other Factors Influencing the Generating Cost of Nuclear	
Power	371
Financing Nuclear Power Plants	374
Nuclear Fuel Outlook	376
Demand for Uranium	376
Uranium Resources	377
Uranium Production	380
Uranium Prices and Investment in Exploration	
and Production	381
Policy Issues	382
The Outlook for Biofuels	385
Highlights	385
Current Status of Biofuels Production and Use	386
Market Overview	386
Ethanol	388
Biodiesel	389
The Environmental Impact of Biofuels	391
Prospects for Biofuels Production and Use	394
Summary of Projections to 2030	394
Regional Trends	400
Key Drivers and Uncertainties	405
Technology and Production Costs	405
Biomass and Land Needs for Biofuels Production	412
International Trade in Biofuels	416

13

15	Energy for Cooking in Developing Countries	419
	Highlights	419
	Household Energy Use in Developing Countries	420
	Harmful Effects of Current Cooking Fuels and Technologies	424
	Health	424
	Environment	427
	The Burden of Fuel Collection	428
	Outlook for Household Biomass Use in Developing Countries	431
	Improving the Way Biomass is Used	433
	Modern Cooking Fuels and Stoves	433
	Quantifying the Potential Impact of Modern Cooking Fuels	
	and Stoves	435
	Policy Implications	440
16	Focus on Brazil	447
	Highlights	447
	Overview	448
	The Political and Economic Outlook	449
	The Political Scene	449
	The National Economy	450
	Recent Trends and Developments in the Energy Sector	452
	Outlook for Energy Demand	454
	Reference Scenario	455
	Alternative Policy Scenario	462
	Outlook for Supply	464
	Oil	464
	Natural Gas	471
	Coal	474
	Biomass	474
	Power and Heat	479
	Environmental Issues	484
	Investment	486
ANNEX	ES	489
		407
Annex A	Tables for Reference and Alternative Policy	10-
	Scenario Projections	491
	Electricity Access	565
	Abbreviations and Definitions	573
	Acronyms	581
Annex E	References	585

© OECD/IEA, 2006

List of Figures

Chapter 1. Key Assumptions

1.1	World Population by Region	57
1.2	Growth in Real GDP Per Capita by Region	60
1.3	Average IEA Crude Oil Import Price in the Reference Scenario	62
1.4	Crude Oil Price and Differentials to Oil Product Prices	62

Chapter 2. Global Energy Trends

2.1	World Primary Energy Demand by Fuel in the Reference Scenario	67
2.2	World Primary Energy Demand by Region in the Reference Scenario	70
2.3	Incremental World Primary Energy Demand by Sector	
	in the Reference Scenario, 2004-2030	71
2.4	Fuel Shares in World Final Energy Demand in the Reference Scenario	72
2.5	Share of Inter-Regional Trade in World Primary Demand	
	by Fossil Fuel in the Reference Scenario	74
2.6	Cumulative Investment in Energy Infrastructure	
	in the Reference Scenario by Fuel and Activity, 2005-2030	78
2.7	Increase in Energy-Related CO ₂ Emissions by Region	80
2.8	World Energy-Related CO ₂ Emissions by Fuel	
	in the Reference Scenario	81
2.9	Energy-Related CO ₂ Emissions by Region in the Reference Scenario	82
2.10	Average Annual Growth in World Energy-Related CO ₂	
	Emissions and Primary Energy Demand in the Reference Scenario	82

Chapter 3. Oil Market Outlook

3.1	Incremental World Oil Demand by Region and Sector	
	in the Reference Scenario, 2004-2030	87
3.2	Top Twenty Countries' Proven Oil Reserves, end-2005	89
3.3	Undiscovered Oil Resources and New Wildcat Wells Drilled,	
	1996-2005	90
3.4	Cumulative Oil and Gas Discoveries and New Wildcat Wells	91
3.5	World Oil Supply by Source	95
3.6	Non-OPEC Conventional Crude Oil and NGLs Production	95
3.7	Gravity and Sulphur Content of Selected Crude Oils, 2005	96
3.8	Non-Conventional Oil Production and Related Natural Gas	
	Needs in Canada	100
3.9	Net Oil Exports in the Reference Scenario	101
3.10	Cumulative Oil Investment by Activity	
	in the Reference Scenario, 2005-2030	103
3.11	Cumulative Investment in Oil Refining by Region, 2005-2030	103

3.12	Access to World Proven Oil Reserves, end-2005	105
3.13	Reduction in World Oil Demand and OPEC Market Share	108
3.14	World Oil Production in the Deferred Investment Case	
	Compared with the Reference Scenario	109
Chapt	er 4. Gas Market Outlook	
4.1	World Primary Natural Gas Demand by Sector	
	in the Reference Scenario	113
4.2	Proven Gas Reserves and Production by Region, 2005	115
4.3	Natural Gas Production by Region in the Reference Scenario	116
4.4	Main Net Inter-Regional Natural Gas Trade Flows	
	in the Reference Scenario, 2004 and 2030	119
4.5	World Inter-Regional Natural Gas Trade by Type	
	in the Reference Scenario	121
4.6	Cumulative Investment in Gas-Supply Infrastructure by Region	
	and Activity in the Reference Scenario, 2005-2030	122
Chapte	er 5. Coal Market Outlook	
5.1	Share of Power Generation in Total Coal Consumption	
	by Region in the Reference Scenario	128
5.2	Proven Coal Reserves by Country	129
5.3	Global Coal Production by Type in the Reference Scenario	131
5.4	Net Inter-Regional Trade in Hard Coal in the Reference Scenario	133
5.5	Indicative Supply Costs for Internationally Traded	
	Steam Coal	134
5.6	Structure of Steam Coal Supply Costs for Major Exporting	
	Countries	135
Chapte	er 6. Power Sector Outlook	
6.1	World Electricity Demand by Region in the Reference	
	Scenario	138
6.2	Average Annual Growth in Electricity Demand by Region	
	in the Reference Scenario	139
6.3	World Incremental Electricity Generation by Fuel	
	in the Reference Scenario	140
6.4	Incremental Coal-Fired Electricity Generation by Region	
	in the Reference Scenario, 2004-2030	141
6.5	World Hydropower Potential	143
6.6	Increase in Power-Sector CO ₂ Emissions by Fuel	
	in the Reference Scenario, 2004-2030	144
6.7	Electricity Generating Cost Ranges of Baseload Technologies	145
6.8	Impact of Capacity Factor on Generating Costs	146

6.9	Impact of Carbon Value on Generating Costs	147
6.10	Cumulative Power-Sector Investment by Region	
	in the Reference Scenario, 2005-2030	149
6.11	Cumulative Power-Sector Investment by Type	
	in the Reference Scenario, 2005-2030	150
6.12	European Generation Margins	151
6.13	US Capacity Reserve Margins	152
6.14	Japan Power-Sector Investment, 1998 to 2003	153
6.15	Private Investment in Electricity Infrastructure	
	in Developing Countries, 1990-2004	154
6.16	Cumulative Private Investment in Electricity Infrastructure	
	in Developing Countries, 1990-2004	155
6.17	Population without Electricity, 2005	156
Chapter	7. Mapping a New Energy Future	
7.1	Years Saved in the Alternative Policy Scenario in Meeting	
	the Levels of Deployment of the Reference Scenario in 2030	172
7.2	World Primary Energy Demand in the Reference	
	and Alternative Policy Scenarios	174
7.3	Incremental Demand and Savings in Fossil Fuels	
	in the Alternative Policy Scenario, 2004-2030	174
7.4	Incremental Non-Fossil Fuel Demand in the Reference	
	and Alternative Policy Scenarios, 2004-2030	176
7.5	Change in Primary Energy Intensity by Region	
	in the Reference and Alternative Policy Scenarios, 2004-2030	177
7.6	Oil Supply in the Alternative Policy Scenario	180
7.7	Increase in Net Oil Imports in Selected Importing Regions	
	in the Alternative Policy Scenario	182
7.8	Natural Gas Imports in Selected Importing Regions	
	in the Reference and Alternative Policy Scenarios	184
7.9	Coal Demand in the Reference and Alternative Policy Scenarios	185
7.10	Change in Oil and Gas Imports in the Reference and Alternative	
	Policy Scenarios, 2004-2030	187
7.11	Energy-Related CO ₂ Emissions by Region in the Alternative	
	Policy Scenario	189
7.12	Change in Energy-Related CO ₂ Emissions by Region	
	in the Reference and Alternative Policy Scenarios, 2004-2030	189
7.13	Energy-Related CO ₂ Emissions Savings by Region	
	in the Alternative Policy Scenario, 2030	191
7.14	Global Savings in CO_2 Emissions in the Alternative Policy	
	Scenario Compared with the Reference Scenario	192

Chapter 8. Assessing the Cost-Effectiveness of Alternative Policies

8.1	Change in Cumulative Demand- and Supply-Side Investment	
	in the Alternative Policy Scenario, 2005-2030	195
8.2	Demand-Side Investment and Final Energy Savings by Region	
	in the Alternative Policy Scenario	200
8.3	Cumulative Global Investment in Electricity-Supply	
	Infrastructure by Scenario, 2005-2030	202
8.4	Investment in Fossil-Fuel Supply in the Reference	
	and Alternative Policy Scenarios, 2005-2030	203
8.5	Oil and Gas Export Revenues in the Middle East and North	
	Africa in the Reference and Alternative Policy Scenarios	205
8.6	Indicative Average Payback Period of Selected Policies	
	in the Alternative Policy Scenario by Region	206
8.7	Change in End-Use Electricity Investment and	
	in Consumers' Electricity Bills in the Alternative	
	Policy Scenario, 2005-2030	207
8.8	Change in End-Use Investment in Transport and Consumers'	
	Fuel Bills in the Alternative Policy Scenario, 2005-2030	209
8.9	World Bank Investment in Energy by Sector, 1990-2005	211
Chapter	9. Deepening the Analysis: Results by Sector	
9.1	Reduction in Electricity Generation in the Alternative Policy	
).1	Scenario by Region, 2030	214
9.2	Global Fuel Shares in Electricity Generation	214
9.3	Reduction in Coal-Fired Generation by Region	21)
).5		217
0 /	in the Alternative Policy Scenario	217
9.4	Share of Nuclear Power in Electricity Generation by Region	218
0.5	in the Alternative Policy Scenario	210
9.5	Shares of non-Hydro Renewable Energy in Electricity Generation	210
0.6	by Region in the Alternative Policy Scenario	219
9.6	Investment Costs of Renewables-Based Power-Generation	220
0.7	Technologies in the Alternative Policy Scenario, 2004 and 2030	220
9.7	CO ₂ Emissions per kWh of Electricity Generated	220
0.0	in the Reference and Alternative Policy Scenarios	220
9.8	World Transport Oil Demand in the Alternative Policy Scenario	222
0.0	and Savings Compared with the Reference Scenario by Source	223
9.9	Road Transport Demand in the Reference and Alternative	225
0.10	Policy Scenarios	225
9.10	World On-Road Passenger Light-Duty Vehicle Stock	229
9.11	New Vehicle Sales by Region, 2005-2030	230
9.12	Technology Shares in New Light-Duty Vehicles Sales	001
	in the Reference and Alternative Policy Scenarios	231

9.13	Growth in Road and Aviation Oil Consumption	
	in the Reference Scenario	232
9.14	World Aviation CO ₂ Emissions	234
9.15	Change in Industrial Energy Demand by Region and Sector in the Alternative Policy Scenario, 2030	236
9.16	Change in Final Energy Consumption in the Residential and	
9.17	Services Sectors in the Alternative Policy Scenario by Fuel, 2030 Change in Electricity Demand in the Residential and Services	242
).1/	Sectors in the Alternative Policy Scenario by Use, 2030	243
Chapter	10. Getting to and Going Beyond the Alternative Policy Scena	rio
10.1	Cumulative Energy-Related CO_2 Emissions in the Reference and Alternative Policy Scenarios, 2005-2030	251
10.2	Reduction in Energy-Related CO ₂ Emissions in the BAPS Case	
	Compared with the Alternative Policy Scenario by Option	258
10.3	Fuel Mix in Power Generation in Different Scenarios	260
10.4	CO ₂ Intensity of Electricity Generation	261
Chapter	11. The Impact of Higher Energy Prices	
11.1	Average IEA Crude Oil Import Price	271
11.2	Average Crude Oil Import Prices by Region in Real Terms	
	and Local Currencies	272
11.3	Average IEA Crude Oil and Natural Gas Import Prices	274
11.4	Average IEA Crude Oil and Coal Import Prices	275
11.5	Change in Real Energy End-Use Prices by Region and Fuel, 1999-2005	276
11.6	Change in Average Annual IEA Crude Oil Import Price	2/0
	and Road Fuel Prices in Ten Largest Oil-Consuming Countries,	
	1999-2005	277
11.7	Economic Value of Energy Subsidies in non-OECD	
	Countries, 2005	280
11.8	Increase in World Primary Oil Demand by Region	284
11.9	Increase in Natural Gas Demand by Region	284
11.10	The Link between Fuel Price and Demand	285
11.11	Crude Oil Price Elasticities of Road Transport Oil Demand	
	versus the Share of Tax in the Pump Price	288
11.12	World Oil Demand and Real GDP	290
11.13	World Oil Demand and Real GDP Per Capita	291
11.14	Share of Transport Sector in Primary Oil Consumption	
	in the Reference and Alternative Policy Scenarios	292
11.15	World Stationary Final Fossil Fuel Demand and Real GDP	
	Per Capita	294

11.16	World Electricity Demand and Real GDP Per Capita	295
11.17	Change in Primary Oil Demand in the High Energy Prices	
	Case by Region and Sector Compared with the Reference	
	Scenario, 2030	297
11.18	Oil-Import Intensity by Region	300
11.19	Increase in the Net Oil and Gas Import Bill in 2005 over 2002	301
11.20	Real GDP Growth by Region	307
11.21	Commodity Price Indices	308
11.22	Current Account Balance in Selected Countries/Regions	309
11.23	Current Account Balances of the United States, China	
	and Oil Exporters	310
Chapter	12. Current Trends in Oil and Gas Investment	
12.1	Total Oil and Gas Industry Investment, 2000-2010	317
12.2	Total Oil and Gas Industry Investment by Sector	320
12.3	Oil and Gas Industry Investment by Type of Company	321
12.4	Investment in Oil and Gas Exploration and Development	322
12.5	Upstream Investment by Activity, 2000-2010	323
12.6	Sanctioned and Planned Project Investment on New Oil	
	and Gas Fields by Region, 2006-2010	323
12.7	Oil and Gas Exploration Investment	326
12.8	New Oil and Gas Project Investment by Source	
	and Destination, 2006-2010	327
12.9	Active Drilling Rigs and Offshore Drilling Rigs under	
	Construction, 1997-2006	328
12.10	Upstream Oil and Gas Industry Investment in Nominal	
	Terms and Adjusted for Cost Inflation	329
12.11	Availability of Petroleum-Industry Graduates by Region	330
12.12	Estimated Capital Intensity of Upstream Development	
	Projects by Region, 2006-2010	331
12.13	Gross Oil Capacity Additions from New Sanctioned	
	and Planned Projects by Region	332
12.14	Cumulative Additions to Global Oil Demand and Net Oil	
	Production Capacity Based on Observed Rates of Decline	
	of Existing Production	334
12.15	World Oil Refinery Investment by Type, 2006-2010	336
12.16	World Oil Refinery Capacity Additions by Region, 2006-2010	337
Chapter	13. Prospects for Nuclear Power	
13.1	Power Sector CO ₂ Emissions per kWh and Shares of Nuclear	
	Power and Renewables in Selected Countries, 2004	345
13.2	Historical World Nuclear Capacity Additions	349

© OECD/IEA, 2006

13.3	Shares of Nuclear Power in Electricity Generation by Region	350
13.4	Increases in Average Nuclear Capacity Factors, 1991-2005	350
13.5	World Nuclear Capacity in the Reference and Alternative Policy	
	Scenarios	360
13.6	Share of Nuclear Power in Total Electricity Generation	
	in the Alternative Policy Scenario	363
13.7	Electricity Generating Costs in the Low Discount Rate Case	367
13.8	Electricity Generating Costs in the High Discount Rate Case	368
13.9	Comparison of Nuclear, Coal and CCGT Generating Costs	
	under Different Coal and Gas Prices	369
13.10	Impact of a 50% Increase in Fuel Price on Generating Costs	370
13.11	Impact of CO ₂ Price on Generating Costs	370
13.12:	Construction Time of Existing Nuclear Power Plants	373
13.13	Identified Uranium Resources in Top Twenty Countries	378
13.14	Uranium Resources versus Cumulative Uranium Demand	379
13.15	World Uranium Production Capability and Reactor	
	Requirements in the Reference and Alternative Policy Scenarios	381
13.16	Uranium Oxide Spot Prices and Exploration Expenditures	382

Chapter 14. The Outlook for Biofuels

14.1	Share of Biofuels in Total Road-Fuel Consumption	
	in Energy Terms by Country, 2004	388
14.2	World Ethanol Production	390
14.3	World Biodiesel Production	391
14.4	Share of Biofuels in Road-Transport Fuel Consumption	
	in Energy Terms	396
14.5	Share of Ethanol in Total Biofuels Consumption in Energy	
	Terms in Brazil, the European Union and the United States	
	in the Reference Scenario	396
14.6	Biofuels Consumption in Selected EU Countries	403
14.7	Biofuel Production Costs versus Gasoline and Diesel Prices	406
14.8	Production Costs of Ethanol in Brazil, the European Union	
	and the United States	407
14.9	Production Costs of Biodiesel in the European Union	
	and the United States	408

Chapter 15. Energy for Cooking in Developing Countries

15.1	Share of Traditional Biomass in Residential Consumption	
	by Country	423
15.2	Primary Energy Source for Cooking in Households in India	
	and Botswana	424

15.3	Annual Deaths Worldwide by Cause	425
15.4	Deaths per Year Caused by Indoor Air Pollution, by WHO region	426
15.5	Woodfuel Supply and Demand Balance in East Africa	429
15.6	Distance Travelled to Collect Fuelwood in Rural Tanzania	430
15.7	Additional LPG Demand Associated with Switching	
	Compared with World Oil Demand	437
15.8	Comparison of Average Annual Cost of LPG Fuel and Technology,	
	2007-2015, with Other Annual Allocations of Resources	439
15.9	Saudi Aramco Contract LPG Price	441
15.10	Residential Biomass Consumption and LPG Retail Price in Brazil	442
Chapter	16. Focus on Brazil	
16.1	Primary Fuel Mix, 1980 and 2004	454
16.2	Oil Import Intensity in Brazil	456
16.3	Passenger Car Stock in Brazil in the Reference and Alternative	
	Policy Scenarios	457
16.4	Industrial Energy Intensity in Selected Regions, 1970-2030	458
16.5	Primary Energy Demand in the Reference and Alternative	
	Policy Scenarios in Brazil	459
16.6	Residential and Services Energy Demand in the Reference	
	and Alternative Policy Scenarios	463
16.7	Brazil's Proven Reserves by Date of Discovery	465
16.8	Oil and Gas Fields and Related Infrastructure in Brazil	466
16.9	Brazil's Oil Balance in the Reference Scenario	468
16.10	Brazil's Crude Oil Production by Source in the Reference Scenario	470
16.11	Natural Gas Balance in Brazil in the Reference Scenario	472
16.12	Biofuels Penetration in the Road-Transport Sector in Brazil	
	in the Reference and Alternative Policy Scenarios, 2004-2030	475
16.13	Planned Infrastructural Developments for Ethanol in Brazil	478
16.14	Power Generating Capacity in Brazil in the Reference Scenario	483
16.15	Brazil's Energy-Related CO ₂ Emissions in the Reference	
	and Alternative Policy Scenarios	485
16.16	Brazil's Cumulative Investment in Energy-Supply	
	Infrastructure in the Reference Scenario, 2005-2030	486

List of Tables

Chapter	Chapter 1. Key Assumptions		
1.1	World Population Growth	56	
1.2	World Real GDP Growth	59	
1.3	Fossil-Fuel Price Assumptions in the Reference Scenario	61	

Chapter 2. Global Energy Trends

2.1	World Primary Energy Demand in the Reference Scenario	66
2.2	Net Energy Imports by Major Region	74
2.3	Cumulative Investment in Energy-Supply Infrastructure	
	in the Reference Scenario, 2005-2030	77
2.4	World Energy-Related CO ₂ Emissions by Sector	
	in the Reference Scenario	80
2.5	World Energy-Related CO ₂ Emission Indicators by Region	
	in the Reference Scenario	83

Chapter 3. Oil Market Outlook

3.1	World Primary Oil Demand	86
3.2	World Oil Supply	92
3.3	Major New Oil-Sands Projects and Expansions in Canada	98
3.4	Oil-Import Dependence by Major Importing Region	
	in the Reference Scenario	101

Chapter 4. Gas Market Outlook

4.1	World Primary Natural Gas Demand in the Reference Scenario	112
4.2	Inter-Regional Natural Gas Trade by Region in the Reference	
	Scenario	118

Chapter 5. Coal Market Outlook

5.1	World Coal Demand	127
5.2	World Coal Production in the Reference Scenario	130
5.3	Hard Coal Net Inter-Regional Trade in the Reference	
	Scenario	132

Chapter 6. Power Sector Outlook

6.1	New Electricity Generating Capacity and Investment	
	by Region in the Reference Scenario, 2005-2030	148

Chapter 7. Mapping a New Energy Future

7.1	Selected Policies Included in the Alternative Policy Scenario	168
7.2	World Energy Demand in the Alternative Policy Scenario	173
7.3	Final Energy Consumption in the Alternative Policy Scenario	177
7.4	World Oil Demand in the Alternative Policy Scenario	179
7.5	Net Imports in Main Importing Regions	181
7.6	World Primary Natural Gas Demand in the Alternative	
	Policy Scenario	183

Chapter 8. Assessing the Cost-Effectiveness of Alternative Policies

Change in Cumulative Electricity Investment in the Alternative	
Policy Scenario, 2005-2030	197
Additional Demand-Side Investment in the Alternative Policy	
Scenario, 2005-2030	198
Cumulative Oil and Gas Import Bills in Main Net Importing	
Regions by Scenario, 2005-2030	204
	Policy Scenario, 2005-2030 Additional Demand-Side Investment in the Alternative Policy Scenario, 2005-2030 Cumulative Oil and Gas Import Bills in Main Net Importing

Chapter 9. Deepening the Analysis: Results by Sector

9.1	Electricity Generation and Electricity Intensity Growth	
	Rates	215
9.2	Changes in Electricity-Generating Capacity Additions	
	in the Alternative Policy Scenario, 2005-2030	217
9.3	Transport Energy Consumption and Related CO ₂ Emissions	
	in the Alternative Policy Scenario	223
9.4	Key Selected Policies on Light-Duty Vehicle Fuel Economy	
	in the Alternative Policy Scenario	227
9.5	Average On-Road Vehicle Fuel Efficiency for New	
	Light-Duty Vehicles in the Reference and Alternative	
	Policy Scenarios	228
9.6	Aviation Fuel Consumption and CO ₂ Emissions	
	in the Alternative Policy Scenario	233
9.7	Change in Industrial Energy Consumption in the Alternative	
	Policy Scenario, 2030	235
9.8	Energy Intensities in the Steel, Cement and Ammonia	
	Industries in Selected Countries, 2004	238
9.9	Average Electricity Intensity of Primary Aluminium Production,	
	2004	239

Chapter 10. Getting to and Going Beyond the Alternative Policy Scenario

10.1	Most Effective Policies for Reducing Cumulative CO ₂	
	Emissions in 2030 in the Alternative Policy Scenario	
	Compared with the Reference Scenario	252
10.2	Options for Emissions Reductions beyond 2030	263

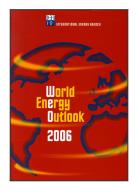
Chapter 11. The Impact of Higher Energy Prices

11.1	Consumption Subsidy as Percentage of Final Energy Prices	
	in non-OECD Countries, 2005	281
11.2	Change in Energy Demand by Fuel and Region	283
11.3	Crude Oil Price and Income Elasticities of Oil Demand	
	Per Capita by Region	287

11.4	Change in Primary Energy Demand by Fuel and Region in the High Energy Prices Case Compared with	
	the Reference Scenario	296
11.5	IMF Analysis of the Macroeconomic Impact of an Increase in the International Crude Oil Price to \$80 per Barrel	304
11.6	Macroeconomic Effects in EIA/IEA High Oil Price Case, 2007-2010	305
11.7	Estimated Impact of Higher Oil Prices since 2002 on Real GDP	306
Chapter	12. Current Trends in Oil and Gas Investment	
12.1	Oil and Gas Production of Surveyed Companies by Type, 2005	319
12.2	Sanctioned and Planned Upstream Oil and Gas Developments for Completion in 2006-2010	324
12.3	Natural Gas Liquefaction Plants to be Commissioned by 2010	338
Chapter	13. Prospects for Nuclear Power	
13.1	Key Nuclear Statistics, 2005	347
13.2	The Ten Largest Nuclear Operators in the World, 2005	348
13.3	Timeline Leading to the Construction of New Nuclear	
	Reactors in the United States	351
13.4	Timeline Leading to the Construction of a New Nuclear Reactor in Finland	352
13.5	Timeline Leading to the Construction of a New Nuclear	
	Reactor in France	353
13.6	Main Policies Related to Nuclear Power Plants in OECD	
	Countries	354
13.7	Examples of High-Level Waste Disposal Strategies	358
13.8	Nuclear Capacity and Share of Nuclear Power in the Reference	
	and Alternative Policy Scenarios	362
13.9	Main Cost and Technology Parameters of Plants Starting	265
12.10	Commercial Operation in 2015	365
13.10	Summary of Financial Parameters	367
13.11	Average Estimated and Realised Investment Costs of Nuclear	272
12.12	Power Plants by Year of Construction Start, 1966-1977	372
13.12	Total World Uranium Resources	377
13.13	World Uranium Production in Selected Countries, 2004	380
13.14	Summary of Nuclear Power Economics	383
	14. The Outlook for Biofuels	
14.1	Biofuels Production by Country, 2005	387
14.2	World Biofuels Consumption by Scenario	394

14.3	Summary of Current Government Support Measures	
	for Biofuels in Selected Countries/Regions	398
14.4	US Biofuels Production Capacity	402
14.5	Performance Characteristics of Biofuel Crops in Europe	410
14.6	Global Potential Biomass Energy Supply to 2050	415
14.7	Land Requirements for Biofuels Production	416
Chapt	er 15. Energy for Cooking in Developing Countries	
15.1	People Relying on Biomass Resources as their Primary	
	Fuel for Cooking, 2004	422
15.2	People Relying on Traditional Biomass	431
15.3	Costs and Characteristics of Selected Fuels	434
15.4	Additional Number of People Needing to Gain Access	
	to Modern Fuels	436
15.5	Purchase Cost of LPG Stoves and Cylinders by Region	439
15.6	Benefits of Cleaner Cooking	440
Chapt	er 16. Focus on Brazil	
16.1	Key Energy Indicators for Brazil	448
16.2	GDP and Population Growth Rates in Brazil in the Reference	
	Scenario	451
16.3	Primary Energy Demand in the Reference Scenario in Brazil	455
16.4	Primary Energy Demand in the Alternative Policy Scenario	
	in Brazil	459
16.5	Main Policies and Programmes Considered in the Alternative	
	Policy Scenario	460
16.6	Change in Total Final Consumption in the Alternative Policy	
	Scenario in 2030	463
16.7	Major Oilfields Currently in Production in Brazil	467
16.8	Brazil's Oil Production in the Reference Scenario	468
16.9	Electricity Generation Mix in Brazil in the Reference Scenario	481
List c	of Boxes	
Chapt	er 1. Key Assumptions	
1.1	Improvements to the Modelling Framework in WEO-2006	55
Chapt	er 2. Global Energy Trends	
2.1	Uncertainty Surrounding China's Energy Trends	69
2.2	Methodology for Projecting Energy Investment	76

2.3Will Signatories to the Kyoto Protocol Respect
their Greenhouse-Gas Emission-Limitation Commitments?79


Chapter 3.1	3. Oil Market Outlook Canadian Oil-Sands Production Costs	99
Chapter 4.1	4. Gas Market Outlook LNG Set to Fill the Growing US Gas-Supply Gap	120
Chapter 5.1	5. Coal Market Outlook The Economics of Coal-to-Liquids Production	128
Chapter 6.1 6.2:	6. Power Sector Outlook Prospects for Hydropower in Developing Countries Siting New Power Infrastructure	142 149
Chapter 7.1 7.2	7. Mapping a New Energy Future New Vehicle Fuel Economy in the United States Current Status and Development of CO ₂ Capture and Storage Technology	167 171
Chapter 8.1 8.2	8. Assessing the Cost-Effectiveness of Alternative Policies Comparing Costs and Savings Energy Efficiency Codes and Standards in China's Residential	194
8.3 8.4: 8.5:	and Services Sectors Energy Efficiency Project in Industry in China Energy Savings Programme in the UK Residential Sector Increasing Light-Duty Vehicle Efficiency	199 201 208 209
Chapter 9.1 9.2 9.3:	9. Deepening the Analysis: Results by Sector The Efficiency of Energy Use in the Aluminium Industry Improving the Energy Efficiency of Motor Systems Opportunities to Save Energy Through More Efficient Lighting	239 240 244
Chapter 11.1 11.2	11. The Impact of Higher Energy Prices Contractual Links between Oil and Gas Prices Quantifying Global Energy Subsidies	273 278
Chapter 12.1	12. Current Trends in Oil and Gas Investment Analysis of Current Oil and Gas Investment Plans	317
13.1 13.2	13. Prospects for Nuclear Power Recent Trends and Outlook for Nuclear Reactor Technology Financing Finland's New Nuclear Reactor	363 375
13.3	Impact of Incentives in the US 2005 Energy Policy Act on Nuclear Power Generating Costs	376

Chapter 15. Energy for Cooking in Developing Countries

15.1	The Brazilian Experience with LPG	432		
15.2	Household Coal and Alternatives in China	435		
15.3	The Role of Microfinance in Expanding the Use of Modern Fuels	443		
Chapter 16. Focus on Brazil				
16.1	Regional Integration in South American Energy Markets	453		
16.2	Petrobras' Development of Deep-water Crude Oil Production	469		
16.3	Refinery Conversion with H-BIO Technology	470		
16.4	Technological Developments in Sugar-Cane and Ethanol			
	Production	477		
16.5	Prospects for Renewable Energy-based Generation	482		

World Energy Outlook Series

World Energy Outlook 1993 World Energy Outlook 1994 World Energy Outlook 1995 World Energy Outlook 1996 World Energy Outlook 1998 World Energy Outlook: 1999 Insights Looking at Energy Subsidies: Getting the Prices Right World Energy Outlook 2000 World Energy Outlook: 2001 Insights Assessing Today's Supplies to Fuel Tomorrow's Growth World Energy Outlook 2002 World Energy Investment Outlook: 2003 Insights World Energy Outlook 2004 World Energy Outlook 2005 Middle East and North Africa Insights World Energy Outlook 2006 World Energy Outlook 2007 (forthcoming) China and India Insights: Implications for Global Energy Markets

From: World Energy Outlook 2006

Access the complete publication at: https://doi.org/10.1787/weo-2006-en

Please cite this chapter as:

International Energy Agency (2006), "Gas Market Outlook", in *World Energy Outlook 2006*, OECD Publishing, Paris.

DOI: https://doi.org/10.1787/weo-2006-5-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d'exploitation du droit de copie (CFC) at contact@cfcopies.com.

