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Abstract

Burn-up for the reference core of MYRRHA over a single cycle of 90 days was estimated with
MCNPX and  SPECTRUM (an MCNPX postprocessor developed at SCK•CEN). Over this cycle,
the source multiplication factor ks dropped from 0.952 to 0.941 (Drs = 1 263 pcm) while the effective
multiplication factor keff dropped from 0.946 to 0.933 (Dr = 1 484 pcm). A number of possible
techniques have already been proposed and studied to minimise this burn-up swing such as proton
current variation, use of burnable poisons, use of negative void coefficients and multi-batch core
operation. We propose the concept of a realistic operational cycle in which voided boxes and/or
burnable absorbers (with different levels of enrichment) are used to minimise the burn-up swing in the
MYRRHA case. In this paper, we also make an initial assessment of the applicability of these
operational cycles to the MYRRHA case.
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Introduction

MYRRHA (multi-purpose hybrid research reactor for high-tech application) [1] is an ADS
(accelerator-driven system) under development at the Belgian Nuclear Research Centre SCK•CEN in
Mol, Belgium, which aims to serve as a basis for the European experimental ADS to provide protons
and neutrons for various R&D applications including materials testing, transmutation experiments, etc.
The system itself consists of a proton accelerator delivering a 350 MeV, 5 mA proton beam to a liquid
Pb-Bi spallation target coupled with a Pb-Bi-cooled, subcritical fast core.

The configuration of the reference core [2] is shown in Figure 1. It consists of 39 fuel assemblies
with 30% MOX (in red) and six assemblies with 20% MOX (in orange). The remaining channels are
loaded with “dummy” assemblies, which are fuel assembly-like boxes filled with Pb-Bi coolant. The
hexagonal fuel assembly for MYRRHA consists of 91 fuel pins, which are surrounded by a hexagonal
shroud with an inner plate-to-plate width of 82.0 mm and a wall thickness of 1.75 mm. The cylindrical
fuel pin itself has an outer diameter of 6.59 mm and an inner diameter of 5.55 mm. The fuel pellet
contained within the pin has a diameter of 5.40 mm without an inner gap. The active length of the fuel
is 600 mm. In this configuration, the source multiplication factor ks is 0.95236 – 0.00028 and the
effective multiplication factor keff is 0.94589 – 0.00020. The targeted operating regime for the system
is three months (90 days) of operation followed by one month (30 days) of core reshuffling, loading
and maintenance. It is foreseen to have two or three cycles per year (if necessary, followed by a longer
maintenance period).

Figure 1. The MYRRHA reference core

For the purpose of burn-up calculations, the active part of a fuel assembly is divided into five
equally sized segments. Each cycle of 90 days is then divided into six steps of 15 days. At the
beginning of each cycle, the neutron spectrum in the fuel of each assembly segment is calculated using
MCNPX [3]. The code SPECTRUM [4] (developed at SCK•CEN as a postprocessor for MCNPX)
uses these spectra to calculate ORIGEN libraries [5] for all fuel assembly segments. This way, every
segment has a library associated with it specifically for the cycle that we are studying. It is possible
to recalculate the library for every burn-up step, but the neutron spectrum and the resulting library do
not change enough to justify this approach. For every burn-up step, MCNPX is used to calculate the
total flux in every segment for the depletion calculation. The composition of the material after each
burn-up step (accounting for 99.99% of absorption in the fuel) is calculated by SPECTRUM using
ORIGEN 2.2. This new composition is then used in MCNX for the next burn-up step. The nuclear data
used for all calculations is JEF2.2 (unless stated otherwise).
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Concept of a realistic operational cycle for MYRRHA

In a normal critical system like a pressurised water reactor (PWR), control is achieved by
compensating the excess reactivity of the fuel with anti-reactivity obtained through various means to
obtain a total reactivity level of zero. Some of these sources of anti-reactivity are the result of operation
and/or the dynamics of the reactor like the xenon and samarium effect, the various temperature
feedback mechanisms and the Doppler effect. Some of these effects can actually change as the burn-up
of the fuel increases. Other sources are actively varied in time to compensate the excess reactivity of
the fuel and to keep the total reactivity of the reactor at zero. In the case of a PWR, this is done by
adding boric acid to the coolant of the primary circuit and by using control rods. At beginning of
life (BOL), a large amount of positive reactivity is invested in the fuel. The boric acid in the water at
BOL compensates most of this positive reactivity. The rest is negated by various other effects. At the
end of the cycle, the anti-reactivity associated with the boric acid becomes zero and it is no longer
possible to maintain the reactor at a zero reactivity level. At this point, the fuel has lost ~40% of its
reactivity due to burn-up. For the following cycle, the fuel elements are reshuffled and new elements
are introduced. The entire cycle then repeats itself.

A similar strategy can be adopted for an ADS-like MYRRHA. However, instead of using the
normal reactivity r associated with the effective multiplication factor keff, we will use the reactivity rs

associated with the source multiplication factor ks. The definition of this reactivity rs is similar to that
of normal reactivity r :
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Because ADS is always subcritical, this reactivity rs will always be negative. As such, we cannot
speak of positive and negative reactivity without rescaling this reactivity to a certain operating level
rs0. This value is a reference value for the reactivity and can be chosen freely. A choice for the operating
level could be the reactivity rs of the core at the beginning of the cycle, or even the mean value of rs

over an entire cycle.

We must insure that the fuel for MYRRHA will at least be able to compensate for all possible
reactivity effects and the burn-up of a few cycles. Contrary to the case of a normal reactor where the
excess of normal reactivity can be quite high, the maximum amount of reactivity rs introduced by the
fuel above the operating level is limited to |rs0|and should even be less if we want a sufficient safety
margin. If the amount of reactivity introduced by the fuel would be higher than this value, the core
could become critical under certain situations. This excess reactivity must be compensated through
different means. First of all, there will be the inherent mechanisms that introduce anti-reactivity like
the Doppler effect, temperature feedback effects on fuel and moderator/coolant, etc. We also require
sources of anti-reactivity that we can actively use to bring the total reactivity back to the operating
level. Possibilities would include the use of burnable absorber (either integrated in a fuel assembly or
as a separate assembly placed around the core), control rods or fuel assembly-like boxes filled with
helium at low pressure (this uses the negative void coefficient of the Pb-Bi coolant to introduce
anti-reactivity). These have been shown in the past to be viable options [6,7,8].

The reactivity balance for MYRRHA using some of these techniques would look like Figures 2(a)
and 2(b). These balances assume a single year of operation with three cycles of 90 days followed by
30 days of maintenance, with the same configuration of the core. Please note that these figures are not
exact and that they are provided to give a sense of how the system would evolve.
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Figure 2. Reactivity balances for MYRRHA

(a)

(b)

The first balance [Figure (2a)] depicts the situation in which only voided boxes are used. The
voided boxes increase the radial and axial leakage from the core. As a result, fewer neutrons are scattered
back into the core, hence lowering the reactivity of the core. It is important to note that these voided
boxes are introduced in the reflector around the core. As the radius of the core increases, the effect of
these boxes on the total reactivity will decrease (because the centre of the core will be unaffected by
the increased leakage caused by the boxes). In the case of Figure 2(a), a number of boxes are added to
the core resulting in an amount of anti-reactivity sufficient to compensate for a few cycles. The loss of
reactivity during one cycle can now be compensated by removing a few boxes from the core. Because
of this, the operating level will not drop below the initial level minus the reactivity loss of a single cycle.
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We now obtain an average operating level over a single cycle of about the initial operating level minus
half the reactivity lost over the cycle due to burn-up. It would also be possible to design the system so
that the average operating level over a single cycle is the operating level we want to achieve over the
cycle. We would only need to introduce some extra positive reactivity at the beginning of the cycle
equal to half the amount of reactivity lost during a single cycle. This can be achieved by simply
removing some voided boxes from the core or by increasing the excess reactivity in the fuel.

Figure 2(b) depicts the situation where voided boxes are used in combination with burnable
absorber in the reflector. In this case, B4C rods are introduced in the reflector (these are not control
rods as they cannot be moved during a cycle). The amount of anti-reactivity decreases during the cycle,
leading to a higher average operating level as compared to the voided boxes. When the configuration of
the core changes a lot from cycle to cycle, the required composition of the rods will change from cycle
to cycle (because the reactivity loss due to burn-up will differ from cycle to cycle). It would be
necessary to custom-build the required rods for every cycle (the density of the burnable absorber must
be adjusted so that the rod represents the right amount of anti-reactivity for that cycle). A solution to
this problem would be the use of rods that represent a small amount of anti-reactivity for every cycle
(e.g. half the reactivity loss of an average cycle, or 500 to 750 pcm for example). The rest could be
compensated by a number of voided boxes. As a result, the total reactivity over a single cycle would
only drop by one-half of the amount lost in the situation without burnable absorber [see Figure 2(b)].
Another method to compensate the burn-up swing would be the use of homogeneous poisoning of the
core, preferably poisoning that can be adjusted during operation like boric acid in a PWR. A way to
achieve homogeneous poisoning would be to incorporate small amounts of the poison in every fuel
assembly (either in a single pin or by adding the poison to structural materials of an assembly). As
with the rods in the reflector, we must take into account the different configurations of the core. This
means that an amount of poison in an assembly that is just right for a given cycle will not necessarily
be right for the next cycle. We also have to keep in mind that burnable absorber in the vicinity of the
spallation source will have a negative effect on the source.

By using these operational cycles, we can keep operating value within a certain range and increase
the residence time of fuel in the core. By using burnable absorbers, we can even reduce this range to
half the range without burnable absorber. A compensation technique that can be altered during operation
would be the most interesting for controlling the system. Using control rods would be the perfect
solution but variation of the accelerator beam current is also an option. However, the latter will raise
safety issues as we would need a beam current reserve. As a result, we would have to foresee the
possibility of injection of the entire reserve at BOL of the core (represents the worst case scenario as
the burn-up of the core is at its minimum). It should be noted that varying the beam current will not
directly change the reactivity of the core; it will only allow us to maintain the same flux or power level
during the cycle. This is because the power of the system is proportional to the beam current Ip:
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In Eq. 2, Y is the neutron yield per proton, Ef is the mean energy released per fission (set to
210 MeV) and n is the mean number of neutrons released (set to 2.94). As we can see, a reduction of
the reactivity by 20%, for example, of its original value will cause the beam current to increase by
20% of its original value if the power over the cycle is to remain constant. So if a core loses 20% of its
reactivity per cycle, and if it would operate during three cycles without any compensation of the
reactivity loss, then the total amount of beam current required would be 160% of the initial value. When
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the core uses only voided boxes, this would be only 120% of the initial value. For the case of voided
boxes combined with burnable absorber, this becomes 110% (if the burnable absorber compensates for
half the reactivity loss). Variation of the beam current can thus be seen as a finetuning technique used
in conjunction with other compensating techniques.

All of the above methods (except beam current adjustment) are techniques that can be used to
keep the global reactivity level and thus the multiplication of the system as constant as possible.
Constant multiplication, however, is not enough. We still need to make sure that we obtain the foreseen
flux levels at discrete positions of the core. This can be controlled by fuel element reshuffling during
the shutdown period between two cycles. There are two distinctly different refuelling schemes available
to us. The first one is the in-out strategy. This involves the loading of new elements in the outer zone
of the core and the relocation of older elements towards the centre of the core. This scheme is widely
used in PWRs as it flattens the radial flux distribution. It does, however, cause significant neutron
leakage from the reactor (something that can be rectified by using an appropriate reflector). The second
strategy is the in-out strategy in which new elements are added in the centre of the core and older
elements are moved to the outside. This causes neutron leakage to drop drastically but will also cause
a radial flux distribution with a large peak in the centre.

Burn-up in the reference core

Table 1 gives the evolution of the most important parameters (multiplication factors ks and keff,
reactivity and power of the system) of the reference core during one irradiation cycle. The upper part
of Figure 3 shows the evolution of the total flux in the middle of three different assemblies (assembly A
close to the source, assembly D in the middle of the core and assembly I on the outside of the core; see
Figure 1). The lower part of Figure 3 shows the same for the fast flux (En > 0.75 MeV). Over this
single cycle, the source multiplication factor ks drops from 0.95236 to 0.94105 while the effective
multiplication factor keff drops from 0.94589 to 0.93279. This equals a total reactivity loss of 1 263 pcm
(associated with ks) or a loss of 1 484 pcm of normal reactivity (associated with keff). As a result, the
reference core of MYRRHA has lost almost 21.3% of its initial power during a single cycle. The total
flux drops by ~20%. On the other hand, the fast flux drops by only ~15% compared to the values at the
beginning of the cycle.

Table 1. Evolution of multiplication factors, reactivity values and power of the reference core

Time
(days) ks keff rs (pcm) r (pcm) P (MW)

0 0.95236 – 0.00028 0.94589 – 0.00021 -5 002 – 31 -5 721 – 23 42.80
15 0.94983 – 0.00038 -5 282 – 43 40.45
30 0.94806 – 0.00043 -5 478 – 48 38.87
45 0.94639 – 0.00045 -5 665 – 50 37.33
60 0.94417 – 0.00048 -5 913 – 54 35.87
75 0.94224 – 0.00048 -6 131 – 54 34.46
90 0.94105 – 0.00049 0.93279 – 0.00020 -6 265 – 55 -7 205 – 23 33.69
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Figure 3. Flux evolution in the reference core

Modified core calculations

To demonstrate the feasibility of the operational cycles that we proposed earlier, we performed
burn-up calculations over two cycles of a modified MYRRHA core (see Figure 4). This modified core
was loaded with 45 assemblies with 30% MOX. The six assemblies with 20% MOX in the reference
core were thus replaced by higher enriched assemblies providing us with 1 783 pcm of excess reactivity
(which should more than suffice to compensate the reactivity loss over a single cycle). This excess
reactivity was almost completely compensated by six voided boxes (accounting for 1 421 pcm of
anti-reactivity) placed symmetrically around the core. The resulting modified core had slightly higher
ks and keff values compared to the reference core (see Table 2). The evolution of the multiplication
factors ks and keff as well as the reactivity and power of the system for this modified core during one
irradiation cycle are given in Table 3. Figure 5 gives the evolution of total flux and fast flux
(En > 0.75 MeV) in the middle of three different assemblies.

Table 2. Multiplication factors and reactivity values in the reference core and modified core

Reference core Full 30% MOX
core

Adding voided
boxes

keff 0.94589 – 0.00021 0.96614 – 0.00022 0.94969 – 0.00020
ks 0.95236 – 0.00028 0.96881 – 0.00019 0.95565 – 0.00026

r (pcm) -5 721 – 24 3 505 – 24 -5 298 – 22
rs (pcm) -5 002 – 31 -3 219 – 20 -4 640 – 29
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Figure 4. The MYRRHA modified core

Table 3. Evolution of multiplication factors, reactivity values and power of the modified core

Time
(days) ks keff rs (pcm) r (pcm) P (MW)

0 0.95565 – 0.00026 0.94969 – 0.00020 -4 640 – 29 -5 298 – 22 46.21
15 0.95329 – 0.00048 -4 899 – 53 43.59
30 0.95053 – 0.00050 -5 204 – 56 40.83
45 0.94942 – 0.00051 -5 327 – 57 39.96
60 0.94762 – 0.00053 -5 528 – 59 38.23
75 0.94629 – 0.00054 -5 676 – 61 37.39
90 0.94367 – 0.00057 0.93611 – 0.00021 -5 969 – 64 -6 825 – 24 35.43

Cooling - - - - -
120 0.95682 – 0.00033 0.95118 – 0.00021 -4 513 – 37 -5 133 – 23 47.55

During the first cycle, the source multiplication factor ks of the modified core dropped from
0.95565 to 0.94367 while the effective multiplication factor keff dropped from 0.94969 to 093611. This
equals a total reactivity loss of 1 329 pcm (associated with ks) or a loss of 1 527 pcm of normal reactivity
(associated with keff). As with the reference core, this modified core lost over 20% of its initial power
during a single cycle. The total and fast flux dropped by ~20%.

At the beginning of the second cycle, the voided box assemblies were removed from the core. As
a result, the reactivity of the core went up with 1 456 pcm, compensating the reactivity loss of the first
cycle. The source multiplication factor went up to 0.95682 and the initial power of the system reached
48 MWth, which was somewhat higher than at the beginning of the first cycle. In other words, the
system reached the power and flux level at the beginning of the first cycle without replacing or adding
new fuel assemblies.

Conclusions

We have shown that the operational cycles proposed in this paper are realistic and that they can
be applied to the MYRRHA case with ease. In the case studied (two cycles of 90 days using only
voided box assemblies), it also appeared that adding new elements after the first cycle was not necessary
to reach the operating level of the first cycle at the beginning of the second cycle. Further study will
include the addition of burnable absorber to the core.
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Figure 5. Flux evolution in the modified core
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