1887

Utilisation and Reliability of High Power Proton Accelerators

Workshop Proceedings, Daejeon, Republic of Korea, 16-19 May 2004

image of Utilisation and Reliability of High Power Proton Accelerators

Accelerator-driven systems (ADS) are being considered for their potential use in the transmutation of radioactive waste. The performance of such hybrid nuclear systems depends to a large extent on the specification and reliability of high power accelerators, as well as the integration of the accelerator with spallation targets and sub-critical systems. At present, much R&D work is still required in order to demonstrate the desired capability of the system as a whole.

Accelerator scientists and reactor physicists from around the world gathered at an NEA workshop to discuss issues of common interest and to present the most recent achievements in their research. Discussions focused on accelerator reliability; target, window and coolant technology; sub-critical system design and ADS simulations; safety and control of ADS; and ADS experiments and test facilities. These proceedings contain the technical papers presented at the workshop as well as summaries of the working group discussions held. They will be of particular interest to scientists working on ADS development as well as on radioactive waste management issues in general.

English

Research and Development on Accelerator-Driven Systems

Nuclear Energy Agency

A fast subcritical reactor coupled to a particle accelerator is a concept of transmutation system that would allow large quantities of minor actinides to be burned efficiently. The research on transmutation encompassing accelerator-driven systems (ADS) is a part of the EURATOM research and development programme that lies within the area of partitioning and transmutation (P&T) of long-lived radionuclides in nuclear waste. P&T is one of the most notable research areas of the EURATOM Fifth (1998-2002) as well as the Sixth (2002-2006) Framework Programmes (FP). The objective of the research work in this area is to determine practical ways of reducing the amount and/or hazard of the waste to be disposed of. In FP5, there are 13 projects in this area with a total budget of about 69 M€ EU contribution is about 28 M€ In FP6, the research in this area, with a EU contribution of about 30 M€, strengthens the work that has been carried out in FP5 with a view to building a European Research Area (ERA) in this field. This has lead to integrating all EU activities on partitioning into one integrated project, and the same is planned for the transmutation activities. Moreover, a targeted project concerning the impact of P&T on waste management has also been initiated. International co-operation in the area of P&T with non-EU countries (such as Canada, USA and Japan), including the Commonwealth of Independent States (CIS) is also outlined.

English

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error