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Abstract

In an accelerator-driven system (ADS), a target system is incorporated. The main purpose of the target
system is to produce excess neutrons, which brings the subcritical reactor core in an ADS to critical
condition. Critical condition allows for operation as a reactor system specifically to fulfil transmutation
capability as well as electricity generation. From a safety point of view, the target system is quite a new
component and potentially provides a novel radiotoxic burden to the environment and to humans. It is
generally understood that there is still unknown physics involved in the operation of a target system, in
particular, regarding nuclear spallation. Moreover, we have not yet developed the related engineering
to cope with so-called “spallation products.” As a primary step towards better comprehension, this
paper describes how we can have a better computational tool to predict the yields of spallation
products in a proposed target system.
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Introduction

Spallation neutron source is made with an intense beam of high-energy particles hitting a thick
target made of heavy nuclei in an accelerator-driven nuclear transmutation system. As a by-product of
this process, a lot of spallation isotopes are produced. The produced spallation isotopes show extensive
distribution regarding mass number and lifetime. It is understood that there are some spallation
products that have radioactivity comparable with Po, which is considered hazardous to humans and is
followed attentively in the case of a Pb-Bi cooling system. In this regard, the amount of spallation
yield must be evaluated with accuracy.

We developed a code to search a set of optimum parameters that is incorporated in the evaluation
code to be compared with experiments. This optimisation code was combined with the evaluation code
in order to increase accuracy of prediction of spallation yields.

We will show that the optimisation system combined with the particle and heavy ion transport
code system (PHITS) [evaluation code] improved the accuracy of prediction of spallation product yields.

Computational simulation of spallation experiments by PHITS code

We used NMTC series code for the transportation of high-energy particles (including the
spallation process) and we introduced the ATRAS code system. In ATRAS, NMTC/JAERI97 [1] was
incorporated: the evaluations of total cross-sections below 100 MeV and elastic cross-sections are
improved, ISOBAR model including the pre-equilibrium process for the intra-nuclear cascade model
is introduced, and the function of level density is improved. Then, the jet AA microscopic transportation
model, by which we calculate the hadron cascade process, was introduced into NMTC/JAERI97
(called NMTC/JAM). One of the crucial improvements for NMTC/JAM was the incorporation of the
general evaporation model (GEM) [2] that can simulate the evaporation and fission processes in order
to model particle injection from excited target nuclei. This has been acknowledged to be quite
effective for the evaluation of spallation with much improved precision. For NMTC/JAM, the following
improvements were incorporated into the PHITS code: the transportation of heavy irons, the quantum
molecular dynamic model and the transportation of low-energy particles.

The recent development of the PHITS code has been focused mainly on heavy ion transportation
and the effects of magnetic fields and gravity. Thus, the comparison between code predictions and
experimental measurements was not performed for the intra-nuclear cascade ~1 GeV, particle
evaporation in the pre-equilibrium process and from the equilibrium excited state, and the fission
model, which are our major interests for the evaluation of spallation products in the ADS target system.

Our primary objective of the current study was to optimise the parameters prepared in PHITS and
to reproduce the experimental data that were recently generated by GSI [3].

To measure the discrepancy between calculated predictions and experimental data, we employed
the so-called “F-value”, which is defined below:

f
F 10=

and f = log(scal,i /s exp,i)
2

where si is the production cross-section of the ith nuclide produced by spallations in the target. The
suffixes “exp” and “cal” mean experimental measurement and calculated value, respectively. In the
PHITS code, there are variations in applied intra-nuclear cascade models, evaporation models and the
energy level for the intra-nuclear cascade model as well as the intermittent use of the Coulomb
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diffusion model. Thus, there were numerous sets for the associated input parameters. We needed to
choose a technique to find the optimum sets of input parameters in order to obtain the overall most
preferable production cross-sections. For this purpose, we used the method of maximal likelihood
function. The maximal likelihood function is defined as follows:

L(q
fi

;s phits,d) =
1

(2pd2)n / 2 exp[-
(s
fi

ex-s
fi

phts(q
fi

))2

2d2 ]

where d is the experimental error matrix, which will be a diagonal matrix when there is no correlation
among errors, and q is a vector of input parameters. This likelihood function signifies the probability
that the calculated production cross-sections agree with the experimental measurements. In order to
determine the maximum of the function, we use the logarithmic maximal likelihood function defined by:

M(q
fi

) ” log L(q
fi

;s phits,d).

The adopted parameters to optimise are: the parameter for the calculation model choice of 14,
which takes the discrete values, and the five continuous parameters. Degree of freedom was 256 for
the 276 experimental data that we used.

Global optimisation method

We used the maximal likelihood method to optimise these parameters, utilising the likelihood
function made of the production cross-section for each isotope produced by spallation. In order to
search global maxima for the likelihood function, the DIRECT algorithm [4] was used, which is
known to be a very efficient method for optimisation. In this algorithm, we can find the maxima with
better accuracy by automatically dividing the parameter space to trap the point of the maximal value.
Figure 1 shows the schematic image of narrowing down the space to the subspace where we can find
the maximal point. Among the provided experimental data, we used selected data of isotopes produced
with high production cross-sections. This data was chosen because the calculated statistical error
grows for isotopes produced with small production cross-sections. For each element, we centred the
isotope with the largest yield. Then, for comparison with the experiments, we weighed the isotopes by
a Gaussian distribution having the width of neutron numbers with statistical accuracies of greater than
0.1 under the same conditions. By this method, we performed the optimisation for all nuclides with
mass numbers from 40 to 200. There are two ways of optimisation – one is global optimisation over
all elements and the other is local optimisation for a specific element.

Figure 2 shows the results obtained for 60Nd, which is one of the rare earth elements of interest to
us. This case is optimised specifically to Nd. As the figure indicates, the experimental measurements
were very well-reproduced. However, the overall c2 value was 659, which means it is a less preferable
reproduction of the experimental measurements as a whole.
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Figure 1. Schematic image of dividing the parameter space through the DIRECT algorithm

Figure 2. Production cross-section of 60Nd in the reaction 208Pb + p (1 GeV)
obtained through experiments and simulations

(a) CASCADE code simulation, (b) PHITS code simulation without optimisation
and (c) PHITS code simulation with optimisation
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Figure 3 shows the results of global optimisation with the c2 value of 397. As shown, the
reproduction capability for nuclides with atomic numbers from 30 to 50 was very well-improved.
However, when the atomic number was greater than 60, the production cross-sections for isotopes
with excess protons were badly underestimated. It can be understood that injection of neutrons during
the evaporation process seems to be underestimated in the experiment because it occurs in evaporation
under an equilibrium state. For this study, intra-nuclear cascade calculations using the molecular
dynamics model were not performed. This was due to the very long CPU time required and the
division of parameter space not being precise enough to produce satisfactory results. In any case, we
think that our work has shown that the neutron emission model during evaporation should be improved.

Figure 3. Production cross-section in the reaction 208Pb + p (1 GeV).
Results of the PHITS code simulation with global optimisation.
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Figure 4 shows the comparison between calculations and experiments over all mass numbers. For
this figure, we integrated the production cross-sections over all the produced isotopes with the same
mass number. Here we found some problematic discrepancies for the rare earth region and elements
with mass numbers less than 80.

Figure 4. Production cross-sections integrated over all produced isotopes
with the same mass number and obtained through a PHITS code simulation

with global optimisation (red line) and experiments (filled red circles)
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Discussion

As seen in Figure 3, for elements with an atomic number larger than 60, the calculated results
were rather shifted to the isotopes of larger mass numbers, so that the production cross-sections of
excess proton isotopes were underestimated. This simply means that the neutron emission from
residual nuclei was smaller compared with the experiments. If we consider that almost all neutrons are
emitted during the evaporation process, we can guess the following reasons for the discrepancy.

The simplest reason may be that the excited energy for the transition to the evaporation process is
too low, such that the condition of the emission of neutrons during evaporation is not well-developed.
In order to resolve this issue, we need to incorporate the pre-equilibrium process and leave enough
excited energy to promote neutron emission during evaporation. Raising the excited energy at the final
stage of the cascade process would also be effective. This can be done by setting a smaller value for
the energy cut-off parameter in the cascade process. In fact, we confirmed that this is effective in
increasing the production of proton-excess isotopes. Unfortunately, energy cut-off was not an input
parameter for PHITS code but a built-in one, and thus not included in the global optimisation procedure.
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The other possibility is that the discrepancy may be improved by considering neutron emission in
the transition to fission, with the formation of multiple fragments of residual nuclei in the range of
excited energy ~4 to 5 MeV. It should be noted that we must re-evaluate physical parameters used in
the evaporation model if we modify the models preceding the evaporation process. The fact that in
Figure 4 we observe a discrepancy between experiments and calculations for nuclides where the mass
number was less than 80 indicates the drawback in the evaluation of the fission process.

Figure 1 shows the comparison of experiments and predicted production cross-sections of PHITS
with optimum parameters.

Summary

Via the above-described optimisation method, we obtained better prediction capability using the
PHITS code for overall yields of spallation products generated and accumulated in an ADS target
system. In particular, the predicted cross-sections for the low mass isotopes were in good agreement
with experiment data. On the other hand, the discrepancy for high mass isotopes was relatively large.
From this study, we found that the predicted cross-sections were sensitive to the parameters that
determine the energy at which the adopted intra-nuclear cascade model was changed or at which the
evaporation model was to be adopted. For even better prediction capability, we need to further
improve excited energy for the evaporation process, which is currently underestimated, and the model
for the fission process.
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