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Problem solving has always been at the heart of both pure and applied mathematics. 
This chapter examines the evolution of the concept of what constitutes a problem, and 
the models and findings concerning problem solving from research into the learning 
and teaching of mathematics. It then considers the emerging understanding of the role 
played by metacognition in current conceptions of problem solving in mathematics and 
its learning. 
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Introduction

Mathematics has been described as a search for regularity in patterns, dimension, quantity, 
uncertainty, shape and change. As a mathematician abstracts what might be a pattern, he or she 
forms a conjecture of what might constitute a description of that pattern. This then shifts the focus 
to testing whether related generalisations may be verified. Such searching is at the heart of problem 
solving. In the abstracting of information, one is engaged in understanding, selecting strategies and 
representations, and viewing both mentally and figuratively a multitude of instances and potential 
cases to form a statement describing the problem and its context. In the verification, one is striving 
to find a solution (Steen, 1990). 

While problem solving is at the heart of mathematics, there is little agreement in the field about 
what problem solving is, what its boundaries are, or how it is best learned or taught to students 
in schools or practised in adult life. Gardiner indicates that the word “problem” has a negative 
connotation suggesting an “unwanted and unresolved tension.” On the other hand, “solving” has the 
notion of “a release of tension” (2008: 995). The juxtaposition of these terms throughout mathematics 
and mathematics education literature suggests that 1) there must be some known way of releasing 
the tension; and 2) that this process is something that works and can be taught to those wishing 
to solve problems. While mathematicians and mathematics educators have suggested various 
methods and approaches, their success in transferring these practices across varied domains within 
mathematics is questionable. Gian-Carlo Rota, the famed combinatorialist, wrote: “Why don’t we tell 
the truth? No one has the faintest idea how the process of scientific induction works and by calling 
it a ‘process’ we may be already making a dangerous assumption” (1986:263). This caution aside, this 
chapter examines some of the models and practices proposed by mathematicians, mathematics 
educators, psychologists and other students of problem solving. 

Mathematicians’ views of problem solving

While mathematicians from the time of Plato and Aristotle have made comments on the 
development of mathematical ideas and the values of deductive and inductive approaches, we begin 
with the comments of the French mathematician Jacques Hadamard (1945) describing his introspective 
study of problem solving, as well as the results from a survey he made of his contemporaries. 

Hadamard begins by refuting the notion that there is a “mathematical brain” and that those 
endowed with one have special powers to create in mathematical venues. He notes “we shall see 
that there is not just one single category of mathematical minds, but several kinds, the differences 
being important enough to make it doubtful that all such minds correspond to one and the same 
characteristic of the brain” (1945: 5). Turning from this, Hadamard examines the preoccupation of 
psychologists with notions of sudden chance discoveries or discoveries as the result of lengthy 
periods of systematic, logical reasoning. Mathematicians, in a survey conducted by M. Edmond 
Maillet, a colleague of Hadamard, discount chance discoveries of major relationships, as well as 
ideas springing forth from a dream (Allen, 1888). However, they did ascribe discoveries to having 
worked hard on a problem, putting it aside for a while, only to return again and then be able to make 
new progress. Among the responses, there was support for the role that emotions play in problem 
solving, a topic we will return to later. 

Hadamard spent a good deal of time analysing Henri Poincaré’s comments on his discoveries 
based on a presentation he made at the Société de Psychologie in Paris in 1937 (Poincaré, 1952). 
Poincaré noted several instances of working diligently on problems, setting them aside, and 
embarking on other tasks, only to have the solution appear to him unexpectedly as he was engaged 
in other activities. Similar reports are attributed to Gauss, Helmholtz and other members of the 
scientific community. Hadamard contrasts this sudden clarification of prior efforts from the 
unconsciousness with the claims of sudden initial discoveries of intact generalisations. 
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As a result of his study, Hadamard proposed a four-stage model for mathematical problem solving. 
It consists of a period of preparation, a period of incubation, a period of illumination and a period 
of verification. The first period, that of preparation, consists of the framing of the question through 
reading, initial work, analysis of partial results and failed attempts, and conscious examination of 
potential strategies which may further the work. The second period, that of incubation, consists of 
the acts of the unconscious mind in combining possibilities and even, potentially, ranking them in 
terms of “beauty and usefulness” (1945: 32). The third period, that of illumination, is perhaps the 
least understood or developed. However, it is the stage through which the varied possibilities are 
brought forward to conscious thought in a more organised and interpretable way than had every 
before been considered or formulated. Once these new possibilities are on the table, the conscious 
mind can then assist in the “précising” of these new avenues of attack and the fourth period, that 
of verification, during the establishment of related solutions to the core problem that initiated the 
work in the first place. Many mathematicians ascribe to similar events in their work toward finding 
the solution(s) to problems, both working alone and when working with and on the discoveries of 
others. 

George Pólya, the famous Hungarian mathematician and author of How to Solve It (1945), took 
the discussion of problem solving another step forward in proposing a similar four-step method 
accompanied by a large number of examples. Pólya’s contribution was aimed at teachers and 
students and shifted the consideration of problem solving from strictly pure mathematical or 
mathematical physics problems to a wider class of mathematics contexts. In it, Pólya popularised 
the notion of heuristics or specialised methods or strategies that work across classes of problems. 
Pólya’s four-step method was framed by the stages of understanding the problem, devising a plan, 
carrying out the plan and looking back. 

In How to Solve It the discussion of mathematical problem solving is presented alongside a series 
of examples and problem-solving strategies, or heuristics, related to mathematics education settings. 
Pólya states that “Routine problems, even many routine problems, may be necessary in teaching 
mathematics but to make the students do no other kind is inexcusable. Teaching the mechanical 
performance of routine mathematical operations and nothing else is well under the level of the 
cookbook because kitchen recipes do leave something to the imagination and judgment of the cook 
but mathematical recipes do not” (1945: 172). Pólya’s model is perhaps the best known of the models 
proposed by mathematicians. Further, its focus, through examples, on a variety of heuristics, both 
named these approaches and set them up as targets of instruction in teaching “problem solving” to 
students as a core process in school mathematics. 

What is a problem?

To this point, we have proceeded as if everyone is in agreement about what a problem actually 
is. Some mathematicians, as in Gian-Carlo Rota’s earlier quote, note the extreme difficulty that 
exists in communicating the differences between real problem solving and working exercises using 
a specific strategy. This is the difficulty that surfaces in reducing problem solving to textual material 
and in attempting to assist teachers to come to recognise, internalise and model problem solving 
in the mathematical sense in their classrooms. This difficulty in delineating what a “problem” is 
clouds communication with teachers and the public about the difference between practising routine 
exercises and engaging in real “problem solving”. 

What is unique about a mathematical problem is that it involves a situation, posed in either an 
abstract or contextual setting, where the individual wrestling with the situation does not immediately 
know how to proceed or of the existence of an algorithm that will immediately move toward a 
solution. Further, there is a lingering sense of “unknowingness” about the situation. However, the 
statement or a representation of the problem situation is within the individual’s ken. 
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Problem solving requires those being asked to participate in searching for a solution to be capable 
of understanding what the problem itself is. From a mathematical standpoint, this brings up one 
necessary condition. The problem solver must either know the relevant concepts’ definitions or be 
capable of finding and deciphering them should they not know them. Further, the problem solver 
needs to understand how to structure mathematical generalisations and representations in such a way 
as to communicate his or her understanding and the path to a solution or a set of solutions. Further, 
the individual has to be willing and capable of actually participating in the search for a solution. 

This said, let us return to the consideration of what a “problem” actually is. A “problem” exists 
when an individual has a particular goal, but doesn’t know how to achieve it (Duncker, 1945). 
Problems can range from the task of finding what number to add to 29 to get a sum of 73 for a five-
year-old, to resolving the Riemann conjecture for a professional mathematician. In both cases, there 
is a barrier between the problem solver’s current knowledge and the desired result. The presence of 
this barrier helps conceptually structure the nature and understanding of a problem situation. In 
either of these cases, there is a lack of a critical connection based on conceptual knowledge or the 
lack of an appropriate algorithmic approach that stymies the problem solver. In other cases, it may 
be the lack of knowledge of a theorem (a principle or generalisation), an emotional block or lack of 
access to tools that creates the barrier between the solver and the solution. As a result of one or 
more of these impediments, the situation may remain and the problem stays unsolved. Depending 
on a student’s motivation – another source of barriers – the individual may or may not return to try 
to solve the problem at another time (Funke, 2010). 

Figure 4.1 provides a visual representation of the nature of a problem, with the givens and goal 
state shown with barriers preventing an immediate solution. The alternative path, avoiding the 
barriers, provides a route to the goal via operators (selections leading to relevant information from 
heuristic strategies, new representations, expert assistance) and information from tools, such as 
computer software, calculation devices and measurement instruments (Mayer, 1990; Frensch and 
Funke, 1995; Mayer and Wittrock, 2006; OECD, 2005).

Figure 4.1 Problem Situation

Barriers

OPERATORS & TOOLS

GIVENS GOAL

Source: Frensch, P.A. and J. Funke (eds.) (1995), Complex Problem Solving: The European Perspective, Erlbaum Associates, Hillsdale, NJ.  

The OECD’s Programme for International Student Assessment (PISA) structured its definition of 
problem-solving competency for its 2012 assessment of 15-year-olds’ problem-solving capabilities 
as follows: 

Problem-solving competency is an individual’s capacity to engage in cognitive processing 
to understand and resolve problem situations where a method of solution is not immediately 
obvious. It includes the willingness to engage with such situations in order to achieve one’s 
potential as a constructive and reflective citizen. (OECD, 2013: 122) 
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The last sentence in the OECD’s conception of problem-solving competency is recognition that 
competencies are important factors in how individuals interact with and shape situations they 
encounter in their lives. It reflects that a person competent in solving problems approaches a problem 
in a reflective and self-monitored, responsible way. This suggests the role that metacognition plays 
in problem solving competence, a topic that will be discussed later. 

The role of problem solving in the development of mathematics

Problems have played a role in mathematics from the beginning of recorded history. In fact, 
some of the oldest mathematical artefacts are semblances of modern day mathematical textbooks, 
with examples of algorithms and comments on their application to the solution of problem-like 
situations. One of the oldest is the Ahmes, or Rhind, papyrus located at the British Museum. It 
consists of some 87 mathematical problems written for developing problem-solving competency in 
students of the period circa 1650 BC (Gillings, 1972). The mathematics education of individuals over 
successive centuries was guided in large by similar “texts” that provided algorithmic procedures and 
then practised their application to solving “problems” representative of the use of mathematics in 
the learners’ culture. 

However, at the turn of the 20th century, mathematicians like Felix Klein in Germany, John Perry 
in England and Eliakim Hastings Moore in the United States issued a call for a shift in emphasis, 
providing a greater focus on developing individual thinking skills and lessening the emphasis on rote 
memory and practice in the learning of mathematics. Others issued concerns for the development 
of these process skills to be balanced with some continued practice of more traditional procedural 
skills (Stanic and Kilpatrick, 1989). 

Stanic and Kilpatrick divide the focus on problem solving surfacing in the learning of mathematics 
into three roles: problem solving as context, problem solving as skill and problem solving as art. 
The first of these roles sees problem solving as providing contexts that serve as means to other 
ends. These means include justifying the study of mathematics itself, motivating learners, providing 
recreation to encourage students, introducing a mathematical concept or skill, or providing practice 
in a newly encountered algorithm or concept. The second role sees problem solving in the learning 
of mathematics as an end goal of the act itself. However, this role can sometimes have a dark side 
in practice, as it leads to a segregation of problems into routine and non-routine problems, with the 
emphasis in learning often shifting to an increased focus on routine problems. The third role for 
problem solving is that of problem solving as an art. This interpretation embraces the work of Pólya 
and other proponents of problem solving who differentiate between active reasoning and plausible 
reasoning, as Pólya liked to term it (Pólya, 1954). He differentiated active reasoning from the finished 
reasoning presented in polished, formal deductive proofs. He embraced the use of active reasoning 
through the inspection of students immersed in a good problem, working their way through towards 
a solution, working individually or in groups. Further, he urged teachers to assume the roles of 
posers of problems, of supportive guides providing motivation, of questioners that caused students 
to reflect on their work, and as co-investigators with their students. 

Key to this third conception of problem solving and the related active roles for teachers are two 
distinctions. The first is between exercises and problems. To Pólya, and most mathematicians and 
mathematics educators, the key feature of a problem is that one does not have an immediate plan 
of what to do. This conception of problem solving shows it as an interactive process cycling between 
the known and the unknown. 

The second distinction is between a list of problem-solving strategies and problem-solving 
itself. Schoenfeld (1992) provides a thoughtful analysis of the multitude of often-contradictory 
conceptions of problem-solving instructional practices and their implementation in contemporary 
classrooms. In summarising the research, Begle had the following summary of the state of the field: 
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A substantial amount of effort has gone into attempts to find out what strategies students use 
in attempting to solve mathematical problems…. No clear-cut directions for mathematics education 
are provided by the findings of these studies. In fact, there are enough indications that problem 
solving strategies are both problem- and student-specific often enough to suggest that finding one 
(or few) strategy which should be taught to all (or most) students are far too simplistic. (1979:145) 

While pessimistic, Begle’s summary was directly on point. Many statements about problem-
solving strategies had been reduced to algorithmic recipes for teaching problem solving, often 
illustrated with examples that were, at best, exercises for the level of students for which the recipes 
were being touted. Writing a decade later, Dossey and colleagues found little had changed: 

Instruction in mathematics classes is characterized by teachers explaining material, 
working problems at the board, and having students work mathematics problems on their 
own - a characterization that has not changed across the eight-year period from 1978 to 1986. 

Considering the prevalence of research suggesting that there may be better ways for students 
to learn mathematics than listening to their teachers and then practicing what they have heard 
in rote fashion, the rarity of innovative approaches is a matter for true concern. Students need to 
learn to apply their newly acquired mathematics skills by involvement in investigative situations, 
and their responses indicate very few activities to engage in such activities. (Dossey et al., 1988:76) 

Subsequent retrospective examinations of students’ and teachers’ reports of learning activities 
and overall student performance have failed to change this view of classroom instruction and the 
time devoted to achieving real problem-solving capabilities in students in United States classrooms. 
Information from other countries suggests that although substantial time is allocated to problem 
solving, students’ capabilities have not yet reached the levels of expectations held by their school 
programmes (Törner, Schoenfeld and Reiss, 2007). 

Students’ problem solving as viewed through PISA

The PISA 2003 special assessment of cross-curricular problem solving (OECD, 2005) presented 
15-year-old students in 40 countries with 10 problem situations that together contained a total of 19 
tasks. These tasks were spread across three types of problem-solving contexts: 

•	 Decision making: Decision-making items required students to choose among alternatives 
under a system of constraints. The major task was to understand the goal state and the 
constraints acting on the alternatives, then make a decision and evaluate its effectiveness. 

•	 System analysis and design: System analysis and design items required students to identify 
relationships between parts of a system and/or design a system to express the relationships 
between parts. The major task was to identify the relevant parts of the system and the 
relationships among them and their relationship to the goal and then to analyse or design a 
system that captures the relationships and to check or evaluate that it does. 

•	 Troubleshooting: Troubleshooting items required students to diagnose and correct a faulty 
or underperforming system or mechanism. The major task was to understand the features 
of the system and their relationship to the malfunction, including causal relationships. 
The solver needs to diagnose the malfunction, propose a remedy and evaluate the 
implementation of the remedy. 

The assessment was presented in a paper-and-pencil assessment. The tasks ranged from 
multiple-choice items to items requiring students to construct and communicate their solution to 
the problem situation presented. The complete set of problems and comparative data are available 
for downloading via OECD (2005). 
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The scale resulting from students’ performances described four distinct levels of problem 
solvers. The PISA problem-solving scale was set so that the mean student performance across OECD 
countries, weighted equally, resided at 500 points with a standard deviation of 100 score points. 
Students scoring below 405 points were described as Below Level 1: weak or emergent problem 
solvers. Students in this class failed to understand even the easiest items in the assessment or failed 
to apply the necessary processes to characterise important features or representations of problems. 
At best, they could only deal with straightforward tasks or make observations requiring few or no 
inferences. 

Students scoring from 405 points up to 499 points are described as Level 1: basic problem solvers. 
These students could solve problems based on only one data source containing discrete, well-defined 
information. They understand the nature of problems and can find and organise information related 
to the major features of a problem. Then they can transfer from one representation to another if that 
transformation is not too complex, as well as check a number of well-defined conditions within the 
problem. 

Students scoring from 500 points up to 591 points were classed as Level 2: reasoning, decision-
making problem solvers. These students could use analytic reasoning skills and solve problems 
requiring decision making. They could apply inductive and deductive reasoning, reason about 
cause and effects, and reason with several information combinations including cases requiring a 
systematic comparison of all possible cases. They were able to combine and synthesise information 
from a variety of sources and representations in moving to solutions. 

Students scoring 592 points and up were labelled as Level 3: reflective, communicative problem 
solvers. Students at this level not only analyse problems and make decisions, but they are also 
capable of thinking about the underlying relationships and how they relate to the solution of 
the problem. Further, they approach their work in a systematic fashion, constructing their own 
representations along the way to solving and verifying their solutions. These students are capable of 
communicating the solution to others in writing and through the use of varied representations. Level 
3 problem solvers are capable of co-ordinating a large number of conditions, monitoring variables 
and temporal conditions, and moving back and forth with changes in interconnected variables. 
Perhaps the most striking aspect about the work of these students is their organisation and ability 
to monitor their work with a focus on developing a clear and coherent solution to the problem at 
hand (OECD, 2005). 

While a full accounting of student performance can be found in OECD (2013), suffice it to say 
that the story of the distribution of problem-solving capabilities is in the variation in performance. 
About half of the students in the OECD PISA 2003 assessment countries and partner economies 
score at or above Level 2. Seventy percent or more of the students in Finland, Japan, Korea and Hong 
Kong, China score at Level 2 or above. Less than 5% of the students in Indonesia and Tunisia were 
able to meet the same criterion. Further, more than one-third of the students in Japan and Hong 
Kong, China perform at Level 3. Korea had the highest mean score (550) for individual countries and 
partner economies, though it was not significantly higher than the scores of the trio of Hong Kong, 
China (548); Finland (548) and Japan (547). 

Large-scale assessments such as PISA provide some gross comparisons of countries’ student 
performance and reflect, to some degree, the emphasis placed on aspects of problem solving in 
their learning experiences. Most enticing from these results, however, is the fact that the higher 
one goes in the performance rankings of students in large-scale assessments or smaller studies 
found in master’s or doctoral theses, the more self-organisation and monitoring begin to stand out 
as criteria differentiating students’ performance in problem-solving settings. It is this capability to 
self-monitor and regulate one’s resources in problem solving we turn to next. There were similar 
findings from the results of the PISA 2012 problem-solving assessment which involved computer-
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delivered complex problems requiring a greater degree of active student engagement with the 
problems than the 2003 PISA problem-solving assessment. Further chapters in this work will focus 
on the results of the 2012 PISA problem-solving study. 

The role of metacognition in mathematical problem solving

A common theme running through studies of students’ problem-solving behaviour is the 
observation that successful problem solvers have control over their progress and rely on reflective 
pauses to organise their observations, abstract potential patterns, form summary statements and 
then plan additional data gathering or attempts to develop a communication about their solution 
(Silver, Branca and Adams, 1980; Schoenfeld, 1985). These plans often parallel the behaviour of experts 
in acquiring the knowledge they need. This observed behaviour is referred to as metacognition. 
Bransford, Brown and Cocking (1999) define this behaviour as “the ability to monitor one’s current 
level of understanding and decide when it is not adequate … Adaptive experts are able to approach 
new situations flexibly and to learn throughout their lifetimes. They not only use what they have 
learned, they are metacognitive and continually question their current levels of expertise and attempt 
to move beyond them” (pp. 47-48). A great deal of literature has been developed to indicate the role 
such metacognitive reflections and monitoring play in overcoming students’ initial misconceptions 
and in developing strong conceptual models that gradually replace those misconceptions with solid 
habits of mind that form a basis for successful problem solving and mathematical inquiry. However, 
one should not assume that all successful problem solvers would approach a problem in the same 
fashion, or that the process of understanding and analysing a problem can be made algorithmic 
(Schoenfeld, 1985, 1989, 1992). 

While the exact link between problem solving and mathematical thinking is unknown, various 
models have been proposed to account for their mutual support of one another. In general the 
metacognitive models tend to focus on the following five factors (Schoenfeld, 1992; Lester, Garofalo 
and Kroll, 1989): 

•	 the knowledge base 

•	 problem-solving strategies 

•	 monitoring and control 

•	 beliefs and affects 

•	 instructional practices. 

Based on these factors, proposed by Schoenfeld, or similar models, Schoenfeld and others in 
mathematics education have used them to examine mathematical thinking and problem solving. 

The knowledge base

First and foremost in examining problem solving is the amount and nature of knowledge the 
solver brings to the situation in which the problem solving is to be focused or the interactions a 
person has with other individuals or environments. Some researchers also focus on the joint roles 
of actions and their specific embedding in the environment in which the problem is embedded, 
arguing for the role of situated cognition (Brown et al., 1989; Lave and Wenger, 1991). A third aspect 
that Schoenfeld discusses is the role that representations (verbal, figural, graphical, tabular and 
symbolic) play in establishing one’s knowledge base (Schoenfeld, 1992). 

Schoenfeld argues that the knowledge base factor breaks down into two areas. “What information 
relevant to the mathematical situation or problem at hand does he or she possess? And how is that 
information accessed and used?” (1992: 349). The first area speaks to the facts, concepts, principles, 
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strategies, algorithms, beliefs and attitudes the solver brings to the table. Central in this is the 
logical differences between facts, definitions, concepts, principles, algorithms and strategies and 
the differing roles they play in exploring contexts, relating information, ordering hypotheses and 
verifying assertions on the way to solving a problem. The navigation of this information requires 
the development of a personal epistemology of mathematical knowledge and the development of 
categories within it. The second area speaks to the structure of memory (Silver, 1987). 

One theory is that the long-term memory is structured as a neural network whose vertices 
represent major chunks of memory and those edges represent connections between those chunks. 
Here again epistemology comes into play in considering the types of knowledge. Gilbert Ryle (1949) 
divided knowledge into “knowing that” and “knowing how”. Cooney and Henderson (1971), looking 
at mathematics content, divided knowledge into deductive, inductive, classifying and analysing, 
as a means of assisting students to relate different forms of knowledge and apply it in different 
situations. In another analysis, Henderson (1967) examined how instruction might link aspects of 
concepts to aid in understanding or structuring instruction. Others have suggested other instances 
and models for dividing knowledge into scripts, frames or schemata. All indicate that problem solvers 
tend to find some organisational form for problem contexts and that these forms help govern their 
behaviour when they encounter similar experiences in the future. 

Problem-solving strategies

As already discussed, there are a number of models that have been developed by mathematicians 
and mathematics educators to codify approaches to problems and their solutions. Pólya (1945) 
suggested broad strategies of analogy, auxiliary elements, decomposing and recombining, induction, 
specialisation, variation, and working backward. However, these have been hard to implement on a 
general scale, even though they have held up with more mathematically inclined audiences. 

Studies have indicated that, given strategic guidance in structuring learning sequences and 
focused work with the strategies, combined with enough time, teachers can separate themselves 
from the “sage on the stage” role to that of “consultant and guide.” (Charles and Lester, 1984). This 
study and others reflect how difficult it is to implement the power of teachers who can model 
problem-solving strategies as Pólya envisioned, even with excellent problems and outstanding 
teachers. 

Self-regulation, or monitoring and control

Self-regulation, or monitoring and control, is at the heart of metacognition and, as such, at the 
heart of mathematical problem solving. Self-regulation is that sixth sense that expert problem solvers 
have about stopping to check progress or recognising that one needs to change their conceptual 
framework, representation or tool usage in considering a particular piece of mathematics. The mind 
is indicating that their present course is not quite as smooth as it should be, or that there is a 
vital missing link in the explanation being developed. This monitoring is essential in the overall 
evaluation progress and the selection of the next step in problem solving. Silver, Branca and Adams 
(1980), Lesh (1985), and Garfalo and Lester (1985) were among the first mathematics educators to see 
the important role that metacognition played in problem solving, in the form of self-regulation and 
monitoring. 

Perhaps the best illustration of the role of such self-regulation is in the time-effort graphs 
Schoenfeld (1989) developed from observations of a pair of students, a mathematician and a pair of 
students’ solving problems after finishing a course in problem solving. The following graphs reflect 
the activities of problem solvers during intervals of time devoted to attempts to solve problems. 
Figure 4.2 shows the work of a pair of students attempting to solve a problem. 
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Figure 4.2 A pair of students’ problem-solving activities over time
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Source: Schoenfeld (1989), “Teaching mathematical thinking and problem solving”.

An examination of the students’ problem-solving activities shows that the pair of students read 
the problem for a minute or less. They then spent the rest of their time involved in exploring and 
working on an approach with no signs of any time being allocated to reflective thought focusing 
on monitoring progress toward a solution. Schoenfeld indicated that this activity-time graph is 
representative of 60% of the cases of student work he has observed in uninitiated problem solvers. 

Figure  4.3 shows the work of a university mathematics professor when confronted with a 
difficult two-stage problem. This display stands in stark contrast to that of the uninitiated problem-
solvers in Figure 4.2. 

Figure 4.3 A mathematician‘s problem-solving activities over time
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Source: Schoenfeld, A. H. (1989), “Teaching mathematical thinking and problem solving” in L.B. Resnick and B.L. Klopfer (eds.), Toward the Thinking 
Curriculum: Current Cognitive Research, Association for Supervision and Curriculum Development, Washington, DC., pp. 83-103.

In this graph, the arrows indicate instances where the mathematics professor made an explicit 
comment about what he was thinking and how it related to the problem solution. Examples were 
statements such as “Hmm, I don’t know exactly where to start here” followed by a shift to two 
minutes of analysing the problem. This then led to three minutes of cycling through planning and 
implementation followed by a minute in verification of the first part of the problem. He then returned 
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Figure 4.4 A pair of students’ activity-time allocation after a problem-solving course
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0 5 10 15 20

Elapsed Time (Minutes)
Source: Schoenfeld, A. H. (1989), “Teaching mathematical thinking and problem solving” in L.B. Resnick and B.L. Klopfer (eds.), Toward the Thinking Curriculum: Current 
Cognitive Research, Association for Supervision and Curriculum Development, Washington, DC., pp. 83-103.

The allocations here are much more like that of the experienced mathematician in approaching 
the problem and its solution. Note the understanding (reading), exploring, planning, implementing 
with monitoring, cycling back to planning and then back to implementing, with a final segment of 
time in verification activities. The change, documented in times and activities in the transitions from 
Figures 4.2 to Figure 4.4, shows the type of observations that evolve in students who are immersed 
in problem-solving contexts with expert feedback. What is clear from the focus on metacognitive 
behaviour and the thinking aloud interviews with problem solvers is that self-regulation behaviour as 
part of problem-solving instruction is an important part of developing mathematical thinking skills. 

Beliefs and attitudes and instructional practice

Students’ approach and avoidance behaviour is shaped to a great extent by their experiences 
of learning and their environment (McLeod and Adams, 1989). Students’ perseverance on a task is 
often related to their confidence or self-image relative to their ability to do mathematics and to get 
“correct” answers. Students have a conception of mathematical problems as “trials” that they must 
endure and that result in a solution if they are able to remember a particular algorithm. When their 
first attempts fail, they move on to the next thing in the queue on the test, in the book, or in class. 

to the second part of the problem, again making several comments reflective of his metacognitive 
activities relative to the problem and its solution. 

Schoenfeld indicates that he informs students in his class that he will be circulating among the 
groups while they work on problems. When he visits their group, he is likely to ask one or more of 
three questions (see Schoenfeld, 1992:356): 

•	 What (exactly) are you doing? (Can you describe it precisely?) 

•	 Why are you doing it? (How does it fit into the solution?) 

•	 How does it help you? (What will you do with the outcome when you obtain it?). 

Over the period of a semester, students in the problem-solving class become more adept at 
answering these questions and even using them as a framework for discussing their solution process 
among themselves. Figure 4.4 shows an example of an activity-time allocation graph for a pair of 
students who had completed the problem-solving course while they were working on a problem. 
Note the change from the activity-time allocation noted in Figure 4.2. 
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Results of international comparative studies indicate that attitudes and relating mathematical 
thinking to games and enjoyable activities result in higher performances on assessments including 
novel problems and other items eliciting problem-solving skills (Chen and Stevenson, 1995; Randel, 
Stevenson and Witruk, 2000). 

Similarly, teachers’ attitudes play a large role in how mathematics is conceptualised, structured 
and presented in the classroom. When teachers are presented with test-mastery materials alongside 
problem-solving materials, they often opt to focus on the test-mastery material rather than providing 
experiences with the heuristics that were also the focus of the lesson. Further, there is the underlying 
foundation of what mathematics itself is. Is it a static set of facts, concepts, generalisations and 
structures that can be applied to problems or is it a dynamic study of relationships and models that 
help bring understanding to structures and the links between them in our ever-changing world? 
The ways in which students’ experiences with mathematical thinking occur in the classroom and 
elsewhere help provide a significant portion of the beliefs and attitudes they form about problems 
and their solutions (Dossey, 1992; Cooney, 1985; Mevarech and Kramarski, 2014; Thompson, 1985). 

Summary

Research on problem solving, along with models considering stages within the process itself, has 
provided mathematicians and mathematics educators at all levels with a great deal of information 
and directions for further research. However, much remains to be done to further the development 
of learners’ capabilities to implement heuristics in profitable ways in their problem-solving work 
in mathematics classes and in their use of mathematics in the world beyond. It is clear that the 
development of metacognitive actions shows promise towards developing the conditions where the 
use of heuristics may be profitable. The solving of real problems in classroom learning and in the 
practice of mathematics, pure or applied, is still a core issue in our world. 
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