Chapter III Selected thorium data

This chapter presents the chemical thermodynamic data set for thorium species that has been selected in this review. Table III-1 contains the recommended thermodynamic data of the thorium compounds and species, Table III-2 the recommended thermodynamic data of chemical equilibrium reactions by which the thorium compounds and complexes are formed, and Table II-3 the temperature coefficients of the heat capacity data of Table III-1 where available.

The species and reactions in the tables appear in standard order of arrangement. Table III-2 contains information only on those reactions for which primary data selections are made in Chapter V of this review. These selected reaction data are used, together with data for key thorium species and auxiliary data selected in this review, to derive the corresponding formation data in Table III-1. The uncertainties associated with values for key thorium species and the auxiliary data are in some cases substantial, leading to comparatively large uncertainties in the formation quantities derived in this manner.

The values of $\Delta_r G_m^{\circ}$ for many reactions are known more accurately than would be calculated directly from the uncertainties of the $\Delta_f G_m^{\circ}$ values in Table III-1 and auxiliary data. The inclusion of a table for reaction data (Table III-2) in this report allows the use of equilibrium constants with total uncertainties that are based directly on the experimental accuracies. This is the main reason for including both Table III-1 and Table III-2.

The selected thermal functions of the heat capacities, listed in Table II-3 refer to the relation

$$C_{nm}^{o}(T) = a + b \times T + c \times T^{2} + d \times T^{-1} + i \times T^{-1/2}$$

A detailed discussion of the selection procedure is presented in Chapter V. It may be noted that this chapter contains data on more species or compounds than are present in the tables of Chapter III. The main reasons for this situation are the lack of information for a proper extrapolation of the primary data to standard conditions in some systems and lack of solid primary data in others.

A warning: The addition of any aqueous species and their data to this internally consistent data base can result in a modified data set, which is no longer rigorous and can lead to erroneous results. The situation is similar when gases or solids are added.

Table III-1: Selected thermodynamic data for thorium compounds and complexes. All ionic species listed in this table are aqueous species. Unless noted otherwise, all data refer to the reference temperature of 298.15 K and to the standard state, *i.e.*, a pressure of 0.1 MPa and, for aqueous species, infinite dilution (I = 0). The uncertainties listed below each value represent total uncertainties and correspond in principle to the statistically defined 95% confidence interval. Values obtained from internal calculation, *cf.* footnotes (a) and (b), are rounded at the third digit after the decimal point and may therefore not be exactly identical to those given in Chapters V to XII. Systematically, all the values are presented with three digits after the decimal point, regardless of the significance of these digits. The data presented in this table are available on computer media from the OECD Nuclear Energy Agency.

Compound	$\Delta_{ m f}G_{ m m}^{ m o}$	$\Delta_{ m f} H_{ m m}^{ m o}$	$S^{ m o}_{ m m}$	$C_{p,\mathrm{m}}^{\mathrm{o}}$
	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J{\cdot}K^{-l}{\cdot}mol^{-l})$	$(J \cdot K^{-1} \cdot mol^{-1})$
Th(cr, α) (fcc)	0.000	0.000	52.640 ±0.500	26.230 ±0.500
Th(g)	560.995 ^(a) ±6.002	602.000 ±6.000	190.170 ±0.010	20.790 ±0.005
Th ⁴⁺	- 704.783 ^(a) ±5.298	-768.700 ± 2.300	-423.100 ± 16.000	- 224.000 ±15.000
ThO(g)	- 51.299 ^(a) ±6.002	-26.000 ± 6.000	240.070 ± 0.050	31.270 ±0.100
ThO ₂ (cr)	- 1168.988 ^(a) ±3.504	- 1226.400 ±3.500	65.230 ±0.200	61.740 ±0.150
ThO ₂ (g)	- 462.128 ^(a) ±15.430	$-455.000^{(b)}$ $\pm 15.403^{(b)}$	281.700 ±3.000	46.840 ±0.500
ThH(g)			233.500 ±5.000	29.600 ±4.000
ThH ₂ (cr)	- 105.468 ^(a) ±2.006	-145.000 ± 2.000	50.730 ±0.100	36.710 ±0.070
ThD ₂ (cr)			55.720 ±0.560	47.670 ±0.470
ThT ₂ (cr)			60.460 ± 0.600	54.300 ±0.540
ThH _{3.75} (cr)	$-\begin{array}{c}-142.877^{\ (a)}\\\pm8.001\end{array}$	-215.400 ± 8.000	54.420 ±0.110	51.320 ±0.100
ThD _{3.75} (cr)			63.970 ±0.640	69.710 ±0.700
ThT _{3.75} (cr)			72.650 ±0.730	81.490 ±0.810

Table III-1 (Continued)

Compound	$\Delta_{ m f}G_{ m m}^{ m o}$	$\Delta_{ m f} H^{ m o}_{ m m}$	$S^{ m o}_{ m m}$	$C_{p,\mathrm{m}}^{\mathrm{o}}$
	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$
Th(OH) ³⁺	- 927.653 ^(b) ±6.018	- 1010.330 ^(b) ±6.707	- 252.765 ^(b) ±28.180	
$\text{Th}(\text{OH})_2^{2^+}$	- 1143.673 ^(b) ±6.018	- 1254.660 ^(b) ±41.464	- 114.459 ^(b) ±140.102	
Th(OH) ₄ (aq)	- 1554.024 ^(b) ±6.638			
$Th_2(OH)_2^{6+}$	- 1850.168 ^(b) ±10.974	$-2050.760^{\ (b)}\\\pm7.325$	- 623.716 ^(b) ±38.485	
$Th_2(OH)_3^{5+}$	- 2082.171 ^(b) ±10.658			
$Th_4(OH)_8^{8+}$	- 4599.809 ^(b) ±21.317	- 5118.440 ^(b) ±23.204	- 708.329 ^(b) ±96.221	
$Th_4(OH)_{12}^{4+}$	- 5512.980 ^(b) ±21.228			
$Th_6(OH)_{14}^{10+}$	- 7338.604 ^(b) ±32.523			
$Th_6(OH)_{15}^{9+}$	- 7575.744 ^(b) ±32.927	- 8426.850 ^(b) ±25.977	- 608.102 ^(b) ±124.441	
ThF(g)	$-0.788^{(a)}$ ±15.422	30.000 ±15.000	257.300 ±12.000	34.700 ±6.000
ThF ³⁺	- 1036.936 ^(b) ±5.411	$-\begin{array}{c}-1104.450 \\ \pm 3.116\end{array}^{(b)}$	$-268.427^{(b)} \pm 17.604$	
ThF ₂ (g)	$-601.857^{(a)}$ $\pm 20.222^{(a)}$	-590.000 ± 20.000	295.200 ±10.000	52.400 ±5.000
ThF_2^{2+}	- 1357.046 ^(b) ±5.631	- 1442.700 ^(b) ±2.672	- 162.534 ^(b) ±16.726	
ThF ₃ (g)	- 1159.774 ^(a) ±15.294	- 1165.000 ±15.000	339.300 ±10.000	73.300 ±5.000
ThF_3^+	- 1667.337 ^(b) ±5.763			
ThF ₄ (cr)	$-2005.736^{(a)}\pm 10.001^{(a)}$	-2100.000 ± 10.000	142.060 ±0.170	110.710 ±0.130
ThF ₄ (g)	- 1719.328 ^(a) ±10.217	$- \begin{array}{c} -1750.700 \\ \pm 10.198 \end{array}^{(b)}$	353.000 ±2.000	93.400 ±2.000
ThF ₄ (aq)	- 1976.887 ^(b) ±6.066			

Compound	$\Delta_{ m f}G_{ m m}^{ m o}$	$\Delta_{\rm f} H_{\rm m}^{ m o}$	$S_{ m m}^{ m o}$	$C_{p,\mathrm{m}}^{\mathrm{o}}$
	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$
ThOF(g)	- 566.186 ^(a) ±12.366	- 550.000 ±12.000	310.900 ±10.000	49.500 ±5.000
ThOF ₂ (cr)	- 1589.171 ^(a) ±7.948	-1663.800 ± 7.800	107.700 ±5.100	
ThCl(g)	215.688 ^(a) ±20.318	247.000 ±20.000	269.200 ± 12.000	36.400 ±6.000
ThCl ³⁺	- 845.704 ^(b) ±5.330			
ThCl ₂ (g)	- 191.337 ^(a) ±22.202	-179.000 ± 22.000	317.100 ±10.000	55.300 ±5.000
ThCl ₃ (g)	- 563.764 ^(a) ±25.178	-569.000 ± 25.000	369.700 ±10.000	78.000 ±5.000
β-ThCl ₄	- 1092.293 ^(a) ±1.984	- 1186.300 ±1.300	183.500 ±5.000	120.300 ±6.000
$ThCl_4 \cdot 2 \ H_2O(cr)$		- 1822.400 ±12.000		
ThCl ₄ · 4 H ₂ O(cr)		-2456.200 ± 12.000		
ThCl ₄ · 7 H ₂ O(cr)		- 3361.900 ±12.000		
ThCl ₄ · 8 H ₂ O(cr)		- 3661.300 ±12.000		
ThCl ₄ (g)	- 922.956 ^(a) ±5.304	$-951.400^{\ (b)}\\\pm 5.166$	403.400 ±4.000	101.400 ±3.000
ThOCl ₂ (cr)	- 1153.564 ^(a) ±2.276	- 1231.500 ±2.100	116.900 ±2.900	
ThClO ₃ ³⁺	- 721.534 ^(b) ±5.515			
ThBr(g)	319.575 ^(a) ±20.318	365.000 ± 20.000	281.100 ± 12.000	37.400 ±6.000
ThBr ³⁺	- 816.510 ^(b) ±5.352			
ThBr ₂ (g)	$-0.027^{(a)}$ ±20.222	40.000 ± 20.000	339.100 ±10.000	56.700 ±5.000
ThBr ₃ (g)	$-371.073^{(a)} \pm 15.295$	-334.000 ± 15.000	405.300 ±10.000	80.800 ±5.000

Table III-1 ((Continued)
---------------	-------------

Table III-1 (Continued)

Compound	$\Delta_{ m f}G_{ m m}^{ m o}$	$\Delta_{ m f} H_{ m m}^{ m o}$	$S_{ m m}^{ m o}$	$C_{p,\mathrm{m}}^{\mathrm{o}}$
	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$
β -ThBr ₄	$-925.023^{(a)}$ $\pm 2.505^{(a)}$	-963.800 ± 2.000	227.000 ±5.000	125.200 ±6.000
ThBr ₄ · 7 H ₂ O(cr)		-3163.900 ± 12.000		
ThBr ₄ · 10 H ₂ O(cr)		-4074.600 ± 12.000		
ThBr ₄ · 12 H ₂ O(cr)		-4677.800 ± 12.000		
ThBr ₄ (g)	$-769.026^{(a)}$ ±5.593	$-742.300^{\ (b)} \\ \pm 5.385$	446.700 ±5.000	104.900 ±3.000
ThOBr ₂ (cr)		- 1129.800 ±5.400		
ThBrO ₃ ³⁺	- 696.558 ^(b) ±5.366			
ThI(g)			288.600 ± 12.000	37.500 ±6.000
$ThI_2(g)$			355.600 ± 10.000	57.400 ±5.000
ThI ₃ (g)			430.000 ± 10.000	81.800 ±5.000
ThL ₄ (cr)	$-659.487^{(a)}$ $\pm 2.668^{(a)}$	-669.600 ± 2.200	251.000 ±5.000	137.100 ±10.000
ThI ₄ (g)	- 518.316 ^(a) ±5.753	$- \begin{array}{c} - 460.600 \\ \pm 5.463 \end{array}^{(b)}$	478.500 ±6.000	106.200 ±4.000
ThOI ₂ (cr)		- 996.600 ±2.300		
ThIO ₃ ³⁺	- 854.752 ^(b) ±5.385			
$Th(IO_3)_2^{2+}$	- 997.243 ^(b) ±5.565			
$Th(IO_3)_3^+$	- 1140.134 ^(b) ±5.825			
ThS(cr)	$-391.862^{(a)} \\ \pm 6.205^{(a)}$	-396.300 ± 6.200	69.810 ±0.700	47.720 ±0.500
ThS ₂ (cr)			96.230 ±1.700	70.290 ±0.500

Compound	$\Delta_{ m f}G_{ m m}^{ m o}$	$\Delta_{ m f} H_{ m m}^{ m o}$	$S^{ m o}_{ m m}$	$C_{p,\mathrm{m}}^{\mathrm{o}}$
	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$
Th ₂ S ₃ (cr)		- 1079.000 ±5.500		
ThOS(cr)			76.300 ±1.500	67.250 ±1.350
ThSO_4^{2+}	$-\begin{array}{c}-1484.006\\\pm 5.620\end{array}^{(b)}$	- 1657.120 ^(b) ±2.449	-216.308 ^(b) ±17.316	
Th(SO ₄) ₂ (cr)				173.500 ±5.000
$Th(SO_4)_2 \cdot 9 H_2O(cr)$	- 4391.269 ^(b) ±5.404			
Th(SO ₄) ₂ (aq)	- 2248.102 ^(b) ±5.580	- 2547.000 ^(b) ±2.664	- 65.151 ^(b) ±17.219	
$Th(SO_4)_3^{2-}$	- 2998.147 ^(b) ±5.461			
ThOSe(cr)			93.500 ±1.900	72.650 ±1.500
ThN(cr)	$-353.638^{(a)}\\\pm10.011$	$- \begin{array}{c} - 381.200 \\ \pm 10.000 \end{array}^{(b)}$	56.000 ±1.500	45.000 ±1.100
ThN_3^{3+}	- 381.926 ^(b) ±6.739			
$Th(N_3)_2^{2+}$	- 57.415 ^(b) ±7.577			
Th ₃ N ₄ (cr)	$- \begin{array}{c} - 1200.051 \\ \pm 15.659 \end{array}^{(a)}$	-1306.800 ± 15.000	183.100 ± 15.000	147.700 ±8.000
Th(NO ₃) ₄ · 4 H ₂ O(cr)		-2702.400 ± 3.800		
$Th(NO_3)_{4} \cdot 5 H_2O(cr)$	$-2322.651^{(a)} \\ \pm 2.814^{(a)}$	-3005.400 ± 2.800	543.100 ±0.800	480.700 ±0.800
ThNO ₃ ³⁺	- 822.997 ^(b) ±5.436			
$Th(NO_3)_2^{2+}$	- 939.499 ^(b) ±5.829			
Th ₄ (PO ₄) ₄ P ₂ O ₇ (cr)				569.000 ±15.000
$ThH_2PO_4^{3+}$	- 1873.843 ^(b) ±5.822			

Compound	$\Delta_{ m f}G_{ m m}^{ m o}$	$\Delta_{ m f} H_{ m m}^{ m o}$	$S_{ m m}^{ m o}$	$C_{p,\mathrm{m}}^{\mathrm{o}}$
	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$
$ThH_3PO_4^{4+}$	- 1864.938 ^(b) ±5.804			
$Th(H_2PO_4)_2^{2+}$	- 3038.907 ^(b) ±6.430			
$Th(H_3PO_4)(H_2PO_4)^{3+}$	- 3034.455 ^(b) ±6.430			
ThAs(cr)			79.800 ±0.500	50.500 ±0.500
Th ₃ As ₄ (cr)			274.600 ±1.500	183.300 ±1.500
ThBi(cr)		- 162.300 ±4.200		
ThBi ₂ (cr)		- 207.100 ±6.300		
Th ₃ Bi ₄ (cr)		- 597.500 ±14.600		
Th ₅ Bi ₃ (cr)		- 532.200 ±16.700		
Th ₅ Sn ₃ (cr)		-510.400 ± 32.000		
ThC _{0.97} (cr)	- 124.466 ^(a) ±6.308	- 124.200 ±6.300	59.100 ±0.900	45.200 ±0.400
ThC _{1.94} (s)	- 126.705 ^(a) ±7.503	- 124.700 ±7.500	70.500 ±0.400	56.800 ±0.200
Th(CO ₃) ₅ ^{6–}	- 3521.231 ^(b) ±6.917			
$Th(OH)_2(CO_3)_2^{2-}$	- 2285.078 ^(b) ±6.070			
ThOH(CO ₃) ₄ ⁵⁻	- 3176.808 ^(b) ±6.217			
$Th(OH)_4(CO_3)^{2-}$	- 2092.167 ^(b) ±6.327			
ThSCN ³⁺	- 623.499 ^(b) ±7.226			
$Th(SCN)_2^{2+}$	- 538.790 ^(b) ±10.626			

Table III-1 (Continued)

Compound	$\Delta_{ m f} G_{ m m}^{ m o}$	$\Delta_{ m f} H_{ m m}^{ m o}$	$S_{ m m}^{ m o}$	$C_{p,\mathrm{m}}^{\mathrm{o}}$
	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$
ThSi ₂ (cr)		- 169.500 ±9.600		
ThSiO ₄ (huttonite)		- 2110.800 ±4.700		
ThSiO ₄ (Thorite)		- 2117.500 ±4.200		
Na ₆ Th(CO ₃) ₅ · 12 H ₂ O(cr)	- 8002.562 ^(b) ±7.301			
ThTi ₂ O ₆ (cr)		- 3095.000 ±4.300		

(a)

Value calculated internally using $\Delta_{\rm f} G_{\rm m}^{\rm o} = \Delta_{\rm f} H_{\rm m}^{\rm o} - T \sum S_{{\rm m},i}^{\rm o}$. Value calculated internally from reaction data (see Table III-2). (b)

Table III-2: Selected thermodynamic data for reactions involving thorium compounds and complexes. All ionic species listed in this table are aqueous species. Unless noted otherwise, all data refer to the reference temperature of 298.15 K and to the standard state, *i.e.*, a pressure of 0.1 MPa and, for aqueous species, infinite dilution (I = 0). The uncertainties listed below each value represent total uncertainties and correspond in principal to the statistically defined 95% confidence interval. Values obtained from internal calculation, *cf.* footnote (a), are rounded at the third digit after the decimal point and may therefore not be exactly identical to those given in Chapters V to XII. Systematically, all the values are presented with three digits after the decimal point, regardless of the significance of these digits. The data presented in this table are available on computer media from the OECD Nuclear Energy Agency.

Species	Reaction			
	$\log_{10} K^{\circ}$	$\Delta_{ m r}G_{ m m}^{ m o}$	$\Delta_{ m r} H_{ m m}^{ m o}$	$\Delta_{ m r}S_{ m m}^{ m o}$
		$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$
Th(g)	$Th(cr) \rightleftharpoons Th(g)$			
ThO ₂ (g)	$ThO_2(cr) \rightleftharpoons ThO_2(cr)$	g)		
			771.400 ±15.000	
ThO ₂ (am, hyd, fresh)	$4 \text{OH}^- + \text{Th}^{4+} \rightleftharpoons 2 \text{H}$	$_2O(l) + ThO_2(am)$, hyd, fresh)	
	46.700 ±0.900	-266.566 ±5.137		
ThO ₂ (am, hyd, aged)	$4 \text{OH}^- + \text{Th}^{4+} \rightleftharpoons 2 \text{H}$	$_2O(l) + ThO_2(am)$, hyd, aged)	
	47.500 ±0.900	-271.132 ±5.137		
Th(OH) ³⁺	$H_2O(l) + Th^{4+} \rightleftharpoons H$	$^{+} + \text{Th}(\text{OH})^{3+}$		
	-2.500 ±0.500	14.270 ±2.854	44.200 ±6.300	100.385 ^(a) ±23.197
$\text{Th}(\text{OH})_2^{2+}$	$2H_2O(l) + Th^{4+} \rightleftharpoons$	$2H^{+} + Th(OH)_{2}^{2+}$		
	-6.200 ±0.500	35.390 ±2.854	85.700 ±41.400	168.741 ^(a) ±139.186
Th(OH) ₄ (aq)	$4H_2O(l) + Th^{4+} \rightleftharpoons$	$4H^+ + Th(OH)_4(a$	(p)	
	-17.400 ±0.700	99.320 ±3.996		
$Th_2(OH)_2^{6+}$	$2H_2O(l) + 2Th^{4+} \rightleftharpoons$	$2H^+ + Th_2(OH)^{e}_2$	5+ 2	
	-5.900 ±0.500	33.677 ±2.854	58.300 ±5.700	82.584 ^(a) ±21.380

Species		Reac	tion		
	$\log_{10} K^{\circ}$	$\Delta_{ m r}G_{ m m}^{ m o}$	$\Delta_{ m r} H_{ m m}^{ m o}$	$\Delta_{ m r}S_{ m m}^{ m o}$	
		$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	
$Th_2(OH)_3^{5+}$	$3H_2O(l) + 2Th^{4+} \equiv$	\Rightarrow 3H ⁺ + Th ₂ (OH)	5+ 3		
	-6.800 ± 0.200	38.815 ±1.142			
$Th_4(OH)_8^{8+}$	$8H_2O(l) + 4Th^{4+} \equiv$	$\geq 8\mathrm{H}^{+} + \mathrm{Th}_{4}(\mathrm{OH})^{2}$	8+ 8		
	-20.400 ± 0.400	116.444 ±2.283	243.000 ±21.300	424.471 ^(a) ±71.850	
Th ₄ (OH) ⁴⁺ ₁₂	$12H_2O(l) + 4Th^{4+} =$	$\Rightarrow 12H^+ + Th_4(Ol$	$H)_{12}^{4+}$		
	-26.600 ± 0.200	151.834 ±1.142			
$Th_6(OH)_{14}^{10+}$	$14H_2O(l) + 6Th^{4+} =$	\Rightarrow 14H ⁺ + Th ₆ (C	$(10^{10+})_{14}^{10+}$		
	-36.800 ±1.200	210.056 ±6.850			
Th ₆ (OH) ⁹⁺ ₁₅	$15H_2O(l) + 6Th^{4+} =$	$\Rightarrow 15H^+ + Th_6(Ol$	H) ⁹⁺ ₁₅		
	-36.800 ±1.500	210.056 ±8.562	472.800 ±22.000	881.248 ^(a) ±79.180	
ThF ³⁺	$F^- + Th^{4+} \rightleftharpoons ThF^{3-}$	÷			
	8.870 ±0.150	-50.630 ± 0.856	-0.400 ± 2.000	168.473 ^(a) ±7.297	
$\mathrm{ThF}_2^{2^+}$	$2F^- + Th^{4+} \rightleftharpoons ThI$	F_2^{2+}			
	15.630 ±0.230	-89.217 ±1.313	-3.300 ± 0.400	288.166 ^(a) ±4.603	
ThF_3^+	$3F^- + Th^{4+} \rightleftharpoons ThI$	F_{3}^{+}			
	20.670 ±0.160	-117.985 ±0.913			
ThF ₄ (cr, hyd)	$4HF(aq) + Th^{4+} \rightleftharpoons 4H^+ + ThF_4(cr, hyd)$				
	19.110 ±0.400	-109.081 ±2.283			
$ThF_4(g)$	$ThF_4(cr) \rightleftharpoons ThF_4(g$	g)			
			349.300 ±2.000		
ThF ₄ (aq)	$4F^- + Th^{4+} \rightleftharpoons ThI$	$F_4(aq)$			
	25.580 ±0.180	-146.012 ±1.027			

Table III-2 (Continued)

Species	Reaction				
	$\log_{10} K^{ m o}$	$\Delta_{ m r}G_{ m m}^{ m o}$	$\Delta_{ m r} H_{ m m}^{ m o}$	$\Delta_{ m r}S_{ m m}^{ m o}$	
		$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	
ThCl ³⁺	$Cl^- + Th^{4+} \rightleftharpoons ThC$	l ³⁺			
	1.700	-9.704			
	±0.100	±0.571			
ThCl ₄ (g)	β -ThCl ₄ \rightleftharpoons ThCl ₄ (g)			
			234.900 ± 5.000		
ThClO ₃ ³⁺	$\text{ClO}_3^- + \text{Th}^{4+} \rightleftharpoons \text{Th}$				
	1.550	-8.847			
	±0.130	±0.742			
ThBr ³⁺	$Br^- + Th^{4+} \rightleftharpoons ThB$	r ³⁺			
	1.380	-7.877			
	±0.130	±0.742			
ThBr ₄ (g)	β -ThBr ₄ \rightleftharpoons ThBr ₄ (g)	221 500		
			221.500 ±5.000		
ThBr Ω_2^{3+}	$BrO_3^- + Th^{4+} \Longrightarrow Th$	BrO_3^{3+}			
TIIBIO3	1.900	-10.845			
	±0.100	±0.571			
ThI ₄ (g)	$ThI_4(cr) \rightleftharpoons ThI_4(g)$				
			209.000		
			±5.000		
ThIO ₃ ³⁺	$IO_3^- + Th^{4+} \rightleftharpoons ThIO_3^-$	D_{3}^{3+}			
	4.140 + 0.100	-23.631 +0.571			
7 (7.0) ²⁺	210^{-1} TI 4^{+} TI	(IO) ²⁺			
$Th(IO_3)_2^2$	$2IO_3 + In \rightleftharpoons Ir$	-39.785			
	±0.120	±0.685			
$Th(IO_3)_3^+$	$3IO_3^- + Th^{4+} \rightleftharpoons Th(IO_3)_3^+$				
	9.870	-56.338			
	±0.110	±0.628			
$\mathrm{Th}\mathrm{SO}_4^{2+}$	$\mathrm{SO}_4^{2-} + \mathrm{Th}^{4+} \rightleftharpoons \mathrm{Th}^{2-}$	SO_4^{2+}			
	6.170	-35.219 +1.827	20.920 + 0.740	$188.292^{(a)}$	
	10.320	±1.04/	±0.740	<u>+0.010</u>	

Table III-2 (Continued)

Species	Reaction					
	$\log_{10}K^{ m o}$	$\Delta_{ m r}G_{ m m}^{ m o}$	$\Delta_{ m r} H_{ m m}^{ m o}$	$\Delta_{ m r}S_{ m m}^{ m o}$		
		$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$		
Th(SO ₄) ₂ ·9H ₂ O(cr)	$9H_2O(l) + 2SO_4^{2-} + Th^{4+} \rightleftharpoons Th(SO_4)_2 \cdot 9H_2O(cr)$					
	11.250 ±0.096	-64.215 ±0.548				
Th(SO ₄) ₂ (aq)	$2\mathrm{SO}_4^{2-} + \mathrm{Th}^{4+} \rightleftharpoons \mathrm{T}$	h(SO ₄) ₂ (aq)				
	9.690 ±0.270	-55.311 ±1.541	40.380 ±1.080	320.949 ^(a) ±6.312		
$Th(SO_4)_{3}^{2-}$	$3SO_4^{2-} + Th^{4+} \rightleftharpoons Th(SO_4)_3^{2-}$					
	10.748 ±0.076	-61.352 ±0.434				
Th(SeO ₃) ₂ (cr)	$Th(SeO_3)_2 \cdot H_2O(cr) \implies H_2O(g) + Th(SeO_3)_2(cr)$					
	6.499 ±0.560	37.094 ±3.195	94.100 ±2.900	191.200 ±4.500		
ThN_{3}^{3+}	$N_3^- + Th^{4+} \rightleftharpoons ThN_3^{4+}$	3+				
	4.440 ±0.640	-25.344 ±3.653				
$Th(N_3)_2^{2+}$	$2N_3^- + Th^{4+} \rightleftharpoons Th(N_3)_2^{2+}$					
	8.590 ±0.640	-49.032 ±3.653				
ThNO ₃ ³⁺	$NO_3^- + Th^{4+} \rightleftharpoons Th^{1+}$	NO_{3}^{3+}				
	1.300 ±0.200	-7.420 ±1.142				
$Th(NO_3)_2^{2+}$	$2\mathrm{NO}_3^- + \mathrm{Th}^{4+} \rightleftharpoons \mathrm{Th}(\mathrm{NO}_3)_2^{2+}$					
	2.300 ±0.400	-13.128 ±2.283				
$ThH_2PO_4^{3+}$	$H_3PO_4(aq) + Th^{4+} \rightleftharpoons H^+ + ThH_2PO_4^{3+}$					
	3.450 ±0.320	-19.693 ±1.827				
ThH ₃ PO ₄ ⁴⁺	$H_3PO_4(aq) + Th^{4+} \rightleftharpoons ThH_3PO_4^{4+}$					
	1.890 ±0.310	-10.788 ±1.769				
$Th(H_2PO_4)_2^{2+}$	$2H_3PO_4(aq) + Th^{4+} \rightleftharpoons 2H^+ + Th(H_2PO_4)_2^{2+}$					
x -	6.200 ±0.320	-35.390 ±1.827				

Table III-2 (Continued)
---------------	------------

Species	Reaction				
	$\log_{10} K^{ m o}$	$\Delta_{ m r}G_{ m m}^{ m o}$	$\Delta_{ m r} H_{ m m}^{ m o}$	$\Delta_{ m r} S_{ m m}^{ m o}$	
		$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot K^{-1} \cdot mol^{-1})$	
$Th(H_3PO_4)(H_2PO_4)^{3+}$	$2\mathrm{H}_{3}\mathrm{PO}_{4}(aq) + \mathrm{Th}^{4+}$	\rightleftharpoons H ⁺ + Th(H ₃ Pe	$O_4)(H_2PO_4)^{3+}$		
	5.420 ±0.320	-30.938 ±1.827			
$Th(CO_3)_5^{6-}$	$5\mathrm{CO}_3^{2-} + \mathrm{Th}^{4+} \rightleftharpoons \mathrm{Th}(\mathrm{CO}_3)_5^{6-}$				
	31.000 ±0.700	-176.949 ±3.996			
ThOH(CO ₃) $^{5-}_{4}$	$4CO_3^{2-} + OH^- + Th^4$	$^{I+} \rightleftharpoons \text{ThOH}(\text{CO}_3)$	$)_{4}^{5-}$		
	35.600 ±0.500	-203.206 ±2.854			
$Th(OH)_2(CO_3)_2^{2-}$	$2\text{CO}_3^{2^-} + 2\text{OH}^- + \text{Th}^{4^+} \rightleftharpoons \text{Th}(\text{OH})_2(\text{CO}_3)_2^{2^-}$				
	36.800 ± 0.500	-210.056 ±2.854			
$Th(OH)_4(CO_3)^{2-} \qquad CO_3^{2-} + 4OH^- + Th^{4+} \rightleftharpoons Th(OH)_4(CO_3)^{2-}$					
	40.400 ± 0.600	-230.605 ±3.425			
ThSCN ³⁺	$SCN^- + Th^{4+} \rightleftharpoons T$	hSCN ³⁺			
	2.000 ±0.500	-11.416 ±2.854			
$Th(SCN)_2^{2+}$	$2SCN^- + Th^{4+} \rightleftharpoons$	$Th(SCN)_2^{2+}$			
	3.400 ±0.800	-19.407 ±4.566			
Na ₆ Th(CO ₃) ₅ ·12H ₂ O(cr)	5CO ₃ ²⁻ + 12H ₂ O(l) +	$-6Na^{+} + Th^{4+} \rightleftharpoons$	Na ₆ Th(CO ₃) ₅ ·12I	H ₂ O(cr)	
	42.200 ±0.800	-240.879 ±4.566			

Table III-2 (Continued)

(a) Value calculated internally using $\Delta_r G_m^o = \Delta_r H_m^o - T \Delta_r S_m^o$.

(b) Value of $\log_{10} K^{\circ}$ calculated internally from $\Delta_{\rm r} G^{\circ}_{\rm m}$

Table III-3: Selected temperature coefficients for heat capacities in the form $C_{p,m}^{o}(T) = a + bT + cT^{2} + eT^{-2}$. The functions are valid between the temperatures T_{\min} and T_{\max} (in K). Units for $C_{p,m}^{o}$ are J·K⁻¹·mol⁻¹.

Compound	а	b	С	е	T(min)	T(max)
Th(cr, α) (fcc)	2.34350×101	8.94500×10 ⁻³	0	1.14000×10^4	298.15	1633
Th(g)	2.41480×10^{1}	-1.45623×10^{-2}	1.77473×10 ⁻⁵	$-5.27700{ imes}10^4$	298.15	700
ThO(g)	2.95010×101	1.33228×10 ⁻²	-6.01025×10^{-6}	-1.48640×10^{5}	298.15	700
ThO ₂ (cr)	7.15780×10^{1}	6.33610×10 ⁻³	7.44770×10 ⁻⁷	$-1.04834{\times}10^{6}$	298.15	2300
ThO ₂ (g)	4.69010×10 ¹	2.01352×10 ⁻²	-1.02652×10^{-5}	-4.57730×10^{5}	298.15	800
ThH ₂ (cr)	8.29500	1.25602×10 ⁻¹	- 5.05319×10 ⁻⁵	-4.04100×10^{5}	298.15	1000
ThH _{3.75} (cr)	- 7.42600	2.37538×10 ⁻¹	-9.33488×10^{-5}	-3.35550×10^{5}	298.15	1000
ThF(g)*	3.57170×10 ¹	4.00180×10 ⁻³	-1.83420×10^{-6}	-1.85670×10^{5}	298.15	700
$\text{ThF}_2(\mathbf{g})^*$	5.46630×101	7.46700×10 ⁻³	- 4.51541×10 ⁻⁶	-3.62070×10^{5}	298.15	600
$\text{ThF}_3(g)^*$	7.71500×101	1.26203×10 ⁻²	- 7.61875×10 ⁻⁶	-6.16320×10^{5}	298.15	600
ThF ₄ (cr)	1.21734×10^{2}	9.06400×10 ⁻³	-2.85740×10^{-7}	-1.21821×10^{6}	298.15	1383
ThF ₄ (g)	1.02950×10^{2}	7.43050×10 ⁻³	-2.91682×10^{-6}	-1.02068×10^{6}	298.15	1300
ThOF(g)	4.89090×101	1.90003×10^{-2} ·	- 1.12413×10 ⁻⁵	-3.59500×10^{5}	298.15	600
ThOF ₂ (cr)	9.66560×101	7.70000×10 ⁻³	-2.29500×10^{-7}	-1.13330×10^{6}	298.15	1500
ThCl(g)*	3.73210×101	1.02980×10 ⁻³	-3.18700×10^{-8}	-1.04870×10^{5}	298.15	1900
ThCl ₂ (g)*	5.77010×101	8.49700×10 ⁻⁴	- 3.99960×10 ⁻⁷	-2.34380×10^{5}	298.15	1000
ThCl ₃ (g)*	8.22270×10^{1}	1.55540×10 ⁻³	-7.31790×10^{-7}	-4.10980×10^{5}	298.15	1000
ThCl ₄ (β)	1.20290×10^{2}	2.32672×10^{-2}	0	-6.15050×10^{5}	298.15	1043
ThCl ₄ (g)*	1.07721×10^{2}	2.99300×10 ⁻⁴	-6.02300×10^{-8}	-5.73880×10^{5}	298.15	3000
ThOCl ₂ (cr)	9.59360×101	1.48040×10^{-2}	3.73900×10 ⁻⁷	-8.31700×10^{5}	298.15	1500
ThBr(g)*	3.74030×101	1.82430×10 ⁻³	-2.05000×10^{-9}	-5.05800×10^{4}	298.15	3000
ThBr ₂ (g)*	5.81670×10 ¹	2.85000×10 ⁻⁵	-5.82000×10^{-9}	-1.28280×10^{5}	298.15	3000
ThBr ₃ (g)*	8.30940×101	4.13000×10 ⁻⁵	-8.28000×10^{-9}	-2.05080×10^{5}	298.15	3000
ThBr ₄ (β)	1.27600×10^{2}	1.50624×10 ⁻²	0	-6.15050×10^{5}	298.15	970
ThBr ₄ (g)*	1.08009×10^{2}	6.53000×10 ⁻⁵	-1.31700×10^{-8}	-2.80920×10^{5}	298.15	3000
ThI(g)*	3.74110×101	1.54660×10 ⁻³	-5.00000×10^{-10}	-3.15000×10^{4}	298.15	3000
$\text{ThI}_2(g)^*$	5.81910×101	8.80000×10 ⁻⁶	- 1.79000×10 ⁻⁹	-7.24600×10^{4}	298.15	3000
ThI ₃ (g)*	8.31280×10^{1}	1.42000×10 ⁻⁵	-2.92000×10^{-9}	-1.18660×10^{5}	298.15	3000
ThI ₄ (cr)	1.40000×10^{2}	1.35000×10 ⁻²	0	-6.15000×10^{5}	298.15	839
$ThI_4(g)^*$	1.08061×10^{2}	2.27000×10 ⁻⁵	-4.55000×10^{-9}	-1.69610×10^{5}	298.15	3000
ThOI ₂ (cr)	1.05789×10^{2}	9.91800×10 ⁻³	3.72400×10 ⁻⁷	-8.31700×10^{5}	298.15	1500
ThS(cr)	5.01240×101	5.46000×10 ⁻³	0	-3.58600×10^{5}	298.15	2000
Th(SO ₄) ₂ (cr)	1.04600×10^{2}	2.3096×10 ⁻¹	0		298.15	900
ThN(cr)	4.78360×101	1.37750×10 ⁻²	0	-6.17200×10^{5}	298.15	2000
Th ₃ N ₄ (cr)	1.81517×10^{2}	2.61810×10 ⁻²	0	-3.70000×10^{6}	298.15	2000
$Th_4(PO_4)_4P_2O_7(cr)$	6.96700×10 ²	1.04550×10 ⁻¹	-1.86250×10^{-7}	-1.41590×10^{7}	298.15	1273

* Fitted from heat capacity values calculated from the molecular parameters given in Table E-1.

Please cite this chapter as:

OECD/Nuclear Energy Agency (2008), "Selected thorium data", in *Chemical Thermodynamics of Thorium, Volume 11*, OECD Publishing, Paris.

DOI: https://doi.org/10.1787/9789264056688-4-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Extracts from publications may be subject to additional disclaimers, which are set out in the complete version of the publication, available at the link provided.

The use of this work, whether digital or print, is governed by the Terms and Conditions to be found at <u>http://www.oecd.org/termsandconditions</u>.

