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Abstract 

This report presents a methodology to classify skill requirements in online job postings into a pre-existing 

expert-driven taxonomy of broader skill categories. The proposed approach uses a semi-supervised 

Machine Learning algorithm and relies on the actual meaning and definition of the skills. It allows for the 

classification of more than 17 000 unique skill keywords contained in the Burning Glass dataset into 61 

categories. The outcome of the classification exercise is validated using O*NET information on skills by 

occupations, and by benchmarking the results of some empirical descriptive exercises against the existing 

literature. Compared to a manual classification, the proposed approach organises large amounts of skills 

information in an analytically tractable form, and with considerable savings in time and human resources. 
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Résumé 

Ce rapport présente une méthodologie permettant de classifier les mots-clés se rapportant aux 

compétences mentionés dans les offres d'emploi en ligne dans une taxonomie préexistante conçue par 

des experts. L'approche proposée s'appuie sur un algorithme d'apprentissage automatique semi-supervisé 

qui utilise la définition et donc la signification des compétences. Elle permet de classer les 17 000 mots-

clés de compétences qui apparaissent dans l'ensemble de la base de données Burning Glass 

Technologies en 61 catégories. Le résultat de l'exercice de classification est validé en comparant les 

compétences par occupation calculées grâce à O*NET et à l’information contenue dans la base de 

données Burning Glass Technologies et classifiée grâce à la méthode présentée. La reproduction de 

certains principaux résultats de la litérature permet de confimer la pertinence de l’exercice de classification. 

L'approche proposée permet donc de traiter une grande quantité de données sur les compétences de 

manière plus efficace en terme de temps et ressources humaines investis qu’une classification manuelle. 
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1. Recent large databases of information derived from online job postings allow for rich analyses of 

labour market dynamics. The Burning Glass Technologies dataset (hereafter: Burning Glass data) contains 

a wealth of information on millions of job postings in several countries, including job and employer 

characteristics, and requirements in terms of education, professional experience, and skills. Using the list 

of skills demanded by employers, for instance, researchers have been able to analyse how skill 

requirements have evolved over time, and how they correlate with several measures of pay and firm 

performance (Deming and Kahn, 2018[1]; Hershbein and Kahn, 2018[2]).  

2. Yet the number of distinct skills listed in the same dataset can be very large. While the rich 

information represents an important advantage over more traditional data sources, which do not usually 

contain such information or with high granularity and timeliness, the large number of listed skills also poses 

some challenges. First, the list contains several synonyms or closely related concepts that should be 

considered as such and analysed together, to avoid interpreting differences in terminology across sectors, 

places, or over time as true variation in skill requirements. Second, in many instances, such large number 

of skills cannot be easily or meaningfully described if not grouped in an appropriate way. These aspects 

stress the necessity to reduce the dimensionality of the skill information in the Burning Glass dataset to 

facilitate analysis. Because of the sheer number of unique skill keywords in Burning Glass, and the 

continuously updated dataset, a manual classification was ruled out as a viable solution. 

3. The present study proposes an original approach to reduce the dimensionality of the skill 

information contained in the Burning Glass dataset. It does so by classifying the approximately 17 000 

different skills appearing in Burning Glass data for Australia, Canada, New Zealand, Singapore, the United 

Kingdom and the United States into a pre-existing skill taxonomy based on the skill’s meaning or definition. 

Instead of a manual classification, this study proposes a semi-supervised machine learning approach that 

produces an automatic classification of skills into the taxonomy’s broader categories. The approach builds 

on BERT (Bidirectional Encoder Representations from Transformers), a state-of-the-art algorithm recently 

published by researchers at Google AI Language, which is trained on a large corpus of text to “understand” 

the English language. In the present context, the model is further trained (fine-tuned) for a specific task, 

i.e. the classification of skills keywords. The proposed approach addresses both issues discussed above: 

it accounts for the existence of synonyms, and classifies the long and time-changing list of Burning Glass 

skills into a final taxonomy that is stable over time. This stability in structure and the mutually exclusive 

nature of the taxonomy’s categories are especially important to simplify empirical analysis. Furthermore, 

the algorithm can be launched every time new data are made available, and the reported new skills need 

to be classified – an exercise that would be potentially very time consuming if performed manually.  

4. The proposed list of broader categories in which the skills will be classified (the taxonomy) largely 

builds on existing taxonomies, which were developed and validated by labour market and education 

experts and have been widely used by policy-makers and statistical agencies. A natural candidate to 

design such final taxonomy is the skill categorisation of the O*NET database. O*NET is a publicly available 

online database that, for each occupation, provides definition and main characteristics, including the skills, 

knowledge and abilities required to perform the job. This detailed information on skills use in occupations 

is organised under a clear hierarchical structure, which is frequently used for policy-making. The present 

study therefore makes extensive use of O*NET’s existing information on skills, and complements it with 

1 Introduction  
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other information where O*NET is not sufficiently detailed to classify Burning Glass requirements (e.g. 

digital skills). 

5. The outcome of the procedure is the classification of the 17 331 skills keywords contained in the 

original Burning Glass data onto a taxonomy of 61 skill categories. Because of the supervised nature of 

the exercise, it is possible to compute the model’s accuracy, i.e., the percentage of correct predictions of 

the model evaluated against a test set, or a subset of the skills that were manually classified by the 

researchers. In the present exercise, accuracy ranges between 74% and 85%. These figures are much 

higher than accuracies obtained by randomly classifying the skills (2%) and mirror the degree of agreement 

reached between humans during the manual allocation of a sub-sample of skills. Indeed disagreements 

among researchers can happen in light of the intrinsic difficulty of classifying vague, incongruous or ill-

defined skill keywords, hence lower accuracy than 100% should be expected.  

6. As a result of the classification, the most populated categories are “Medicine and Dentistry”, 

“Management of Financial Resources”, and “Biology”, which partially reflects the high frequency of health-

related job postings in the Burning Glass database, and their propensity to include very specific skill 

requirements. Conversely, skills relating to abilities (as per O*NET definition) are very rare, possibly 

because they are implicit and are not clearly stated in the job advertisement in the first place.  

7. The last section of this study displays some applications of the classification to the main Burning 

Glass datasets, with the aim of further validating the classification. The underlying assumption is that 

sizeable errors in the classification would reflect in empirical results that are inconsistent with the literature. 

A first validation exercise compares, for each occupation, the frequency of the classified Burning Glass 

skills with data on the importance of skill requirements as reported in O*NET. While the association is not 

expected to be perfect (e.g. due to difference between online and overall labour demand), the correlation 

is 52%, positive, highly significant, and robust to controlling for different levels of occupational aggregation.  

8. A second set of validation exercises, instead, describes patterns of skill demand from online job 

postings, and attempts a comparison with results in the relevant literature. A first exercise looks at the 

variance in skill requirements, and finds that  employer specificities and other unobservable factors explain 

a much larger share of the variance than occupation, education or experience attached to the job postings, 

which is consistent with findings in Deming and Kahn (2018[1]). A second exercise estimates the difference 

in the probability of requiring a certain skill if the job posting is opened in a digital intensive vs less digital 

intensive sector. For communication, digital, cognitive and managerial skills (such as resource 

management skills), online demand is higher in digital intensive than less digital intensive sectors, while 

the opposite is true for production or physical skills. These results are also in line with findings by Grundke 

et al. (2018[3]), computed using data on skill use on the job from the OECD Survey of Adult Skills. Lastly, 

industry-specific skills, but also cognitive, science, social and management skills are associated with 

relatively high posted wages, irrespective of the advertised sector, occupation or geographical location. 

Conversely, postings requiring mainly physical skills, skills most related to production or business 

processes, language skills and attitudes offer on average lower starting wages. These estimated wage 

returns are consistent with results from the existing literature (Deming and Kahn, 2018[1]; Hanushek et al., 

2015[4]; Grinis, 2019[5]). From these validation exercises, we conclude that the methodology is suitable to 

classify a large amount of data while avoiding an extremely time-consuming and onerous manual task.  

9. In the remainder of this study, Section 2 discusses the related literature, both the economic one 

using Burning Glass skill data and the data science one presenting Natural Language Processing models 

for text classification. Section 3 describes the dataset used and the final taxonomy based on O*NET. 

Section 4 introduces the methodology developed to map Burning Glass skills onto the final taxonomy, and 

Section 5 discusses the results of the classification exercise, including model’s accuracy. Section 6 shows 

the results of several validation exercises comparing the results of the classification exercise with other 

expert-driven and data-driven classifications, as well as some descriptive statistics using the classification. 

Section 7 concludes.  
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Leveraging on the skill information contained in Burning Glass 

10. Several studies have used Burning Glass data to analyse skill dynamics in job postings. Burning 

Glass itself exploits this information in a number of policy reports, for instance to identify the fastest-growing 

occupations and skills in the U.S. job market, to analyse demand for IT skills in non-tech industries, or to 

study the demand for digital skills in the UK (Burning Glass Technologies, 2019[6]; Burning Glass 

Technologies, 2019[7]; Burning Glass Technologies, 2019[8]). The same data are also used in academic 

research about employers’ skills demand: see for instance Börner et al. (2018[9]), Dorrer (2014[10]) and 

(Beblavý, Fabo and Lenearts, 2016[11]) for a focus on IT skills. Other researchers study the impact of the 

Great Recession, and highlight that skills requirements in job vacancy ads increased in locations 

particularly affected by the crisis (Hershbein and Kahn, 2018[2]; Modestino, Shoag and Ballance, 2019[12]). 

The impact was more pronounced for routine-cognitive occupations such as clerical, administrative, and 

sales occupations (Hershbein and Kahn, 2018[2]), and in high-wage cities (Blair and Deming, 2020[13]). 

Furthermore, the effects were persistent among high-skill jobs while increases in skill requirements in job 

vacancy ads for middle-skill and low-skill occupations were either temporary or non-existent (Burke et al., 

2019[14]), or tended to reverse as the labour market recovered (Modestino, Shoag and Ballance, 2016[15]).  

11. In exploring the causes of these changes in skill requirements, Kuhn, Luck and Mansour (2018[16])  

show that firms affected by offshoring-related layoffs increase their demand for soft skills, such as 

communication and teamwork. Dillender and Forsythe (2019[17]) argue that an increase in skill 

requirements can be linked to the adoption of new software technology at the job-title level. Campello, Gao 

and Xu (2019[18]) demonstrate negative effects of local personal income taxes on skill requirements, and 

interpret them as a tax-induced “brain-drain” having a detrimental effect on the skill composition of local 

labour markets. 

12. In turn, these changing job skill requirements have a profound impact on the dynamics of the 

labour market and on the wider economy. For instance, job openings including STEM requirements take 

longer to fill (Rothwell, 2014[19]). Earnings dynamics during the career are also affected: the earnings 

premium for college graduates majoring in technology-intensive subjects declines rapidly (Deming and 

Noray, 2020[20]). Consequently, these individuals move out of faster-changing occupations as they gain 

experience. Deming and Kahn  (2018[1]) also present evidence of a positive correlation between employer 

demand for cognitive and social skills, and measures of pay and firm performance.  

13. To conduct these empirical investigations, researchers do not use the skill information as 

contained in the Burning Glass dataset, but rather rely on various methods to reduce the dimensionality of 

the information. First, some studies use requirements in terms of education and experience as indirect 

measures of skill requirements, therefore discarding a lot of potentially useful information (Blair and 

Deming, 2020[13]; Modestino, Shoag and Ballance, 2019[12]).  

14. A number of studies exploit the skill taxonomy built by Burning Glass, mapping the approximately 

17 000 distinct skill keywords onto 1 200 “clusters” and 28 “families”. This is the case for instance of Burke 

et al. (2019[14]), Dorrer (2014[10]) or Modestino, Shoag and Ballance (2016[15]). However, the methodology 

used by Burning Glass to build their taxonomy is not explained clearly, and the taxonomy itself tends to 

2 Related studies  
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reflect industry categories rather than actual skills. Furthermore, in some instances, the same variable 

contains what should be considered different levels of a skill hierarchy; for instance, a Burning Glass skill 

cluster variable lists both “Secretarial” and “Record Keeping” skills, therefore implicitly suggesting that 

these two concepts are at the same hierarchical level of a skill taxonomy.  

15. Alternative approaches to reduce the dimensionality of Burning Glass skills include Börner et al. 

(2018[9]), who rely on a manual tagging of hard vs soft skills for approximately 3 000 skills that appear in 

data science and data engineering jobs. A time-consuming endeavour, this requires further investments in 

extending the tagging every time the underlying Burning Glass data introduce a new skill. Recent OECD 

work by Brüning and Mangeol (2020[21]) manually classify the skills into four main categories: cognitive, 

socio-emotional, technical transferable, or technical job-specific, where the first three categories include 

skills potentially applicable to a large range of jobs and therefore defined as “transferable”. The 

classification is applied to skills in job postings for the United States in 2018 that have non-missing 

occupation information and require a higher education degree.   

16. Other works use a restricted number of categories to identify particular skills (Beblavý, Fabo and 

Lenearts, 2016[11]; Campello, Gao and Xu, 2019[18]; Deming and Kahn, 2018[1]; Deming and Noray, 2020[20]; 

Hershbein and Kahn, 2018[2]; Kuhn, Luck and Mansour, 2018[16]). In these cases, the authors specify a 

number of “final” categories (ranging from 2 to 14), as well as the different skill keywords which fall into 

each category ex-ante. For instance, (Deming and Kahn, 2018[1]) consider ten categories:  cognitive, 

social, character, writing, customer service, project management, people management, financial, 

budgeting, computer, and software skills. Job vacancies that contain keywords and phrases such as 

“problem solving,” “research,” and “analytical” are considered as requiring cognitive skills, and similar 

definitions are developed for the other nine categories. The authors therefore must identify the categories 

that are important in the labour market and the list of accepted keywords ex-ante. This, however, is only 

feasible when the number of skills categories is small and therefore, under this approach, the proposed 

list of skill categories is not exhaustive and not all skills contained in Burning Glass data can be classified. 

Other studies link Burning Glass skill information with expert-driven skill classifications. For instance, to 

calculate the education, training, and skill requirements of job ads and classify them into STEM or non-

STEM openings, Rothwell (2014[19]) matches the Burning Glass dataset with data from the U.S. Bureau of 

Labor Statistics and from O*NET, based on occupational codes.   

17. Finally, a nascent strand of literature implements purely data-driven Machine Learning algorithms 

to classify Burning Glass skills into a smaller number of categories, as in e.g. Djumalieva and Sleeman 

(2018[22]). The authors model skills and their relationship using a network graph, where skills are 

represented as nodes and are connected with lines according to whether and how often they co-occur in 

job postings.  The relationship between two skills (co-occurrence) is measured using both simple pairwise 

co-occurrences (number of times two skills appear in the same advert), as well as their shared context. 

After building the network graph, similar skills are grouped together using clustering techniques. This 

approach allows identifying groups of similar skills beyond pairwise connections, but also of transversal 

skills. However, the authors’ approach also presents some important limitations. First, it is not clear how 

new data waves can be integrated, nor how this will modify results (in particular, the number and nature of 

final groupings). Second, the labelling of different clusters is challenging: according to the authors 

themselves, a first attempt to create data-driven labels failed, as it did not produce names that were 

representative of the whole content of each respective category, and manual labelling is very time 

consuming. Another attempt to group skills based on their co-occurrences, with the same caveats as 

above, is presented in Dawson et al. (2019[23]). They first compute the relative importance of a skill in a job 

ad, and then identify skills as similar when they are found to be relatively important in the same job ads. 
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Natural Language Processing techniques for classification  

18. Text classification, i.e. the transformation of unstructured textual data (documents, books, reports, 

etc.) in a structured format, is a long-standing problem in the field of data science. Recent breakthroughs 

in Natural Language Processing (NLP) have allowed significant progress in this matter and have permitted 

a number of important real-life applications. Text classification usually involves the following steps: Feature 

Extraction, Dimensionality Reduction, and finally Classification (Kowsari et al., 2020[24]).  

19. The first step, feature extraction, is the process of transforming unstructured textual data in a 

mathematical object (e.g. a vector) that can be used later by a classifier. A preliminary cleaning step is 

often needed, including stop words removal, noise removal, spelling correction, capitalisation, tokenisation, 

and/or lemmatisation. The data (depending on the application: characters, groups of characters also known 

as n-grams, words, sentences or paragraphs) are then transformed into vectors. Popular methods to 

achieve this transformation include Bag of Words (BoW), TF-IDF Vectorisation (Jones, 1972[25]) and Word 

embeddings (Mikolov et al., 2013[26]; Pennington, Socher and Manning, 2014[27]). Bag of Words models 

represent words as one-hot vectors (consisting of 0s in all cells with the exception of a single 1 in a cell 

used uniquely to identify the word). This is the simplest technique but it presents a major drawback: two 

related words may not be identified as such because they can be attributed radically different vectors. More 

recently, TF-IDF and, to a greater extent, word embedding techniques, have delivered unprecedented 

improvements in text classification by representing words as dense vectors (where most elements are non-

zero), as they allow for the detection of finer relationships between words. Still, these methods fail to take 

into account the context in which a word can be used and thus showed poor performance for words that 

acquire different meanings depending on context. In the late 2010s, major advances were achieved thanks 

to the development of contextualised representations methods (Peters et al., 2018[28]). With these 

techniques, words are not attributed a single vector and their representation depends on the sentence in 

which they are embedded. 

20. The second step, dimensionality reduction, is optional. Its aim is to map the word representations 

into a vector space with a lower dimensionality, to simplify the classification at a later stage. Traditional 

techniques include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), T-distributed 

Stochastic Neighbour Embedding (t-SNE) or other projection algorithms. More recently, Autoencoders 

(Goodfellow, Bengio and Courville, 2016[29]) have achieved great success in this task. Autoencoders are 

Artificial Neural Networks (ANNs) transforming a list of input vectors into a list of output vectors. 

Dimensionality reduction occurs when the size of the output list is smaller than the size of the input list.     

21. The classification part consists in mapping the vector representation of a text (characters, n-grams, 

words, sentences or paragraphs) into one of several predetermined categories.1 This can be achieved with 

classification algorithms that are not specific to NLP: logistic regression, k-nearest neighbours, support 

vector machines (SVM), naïve Bayes, decision trees, etc. The most recent state-of-the-art models rely on 

Deep Neural Networks (DNNs) with a final softmax classifier. In these models, the dimensionality reduction 

and the classification parts are often merged into a single step: the model takes a pre-processed sentence 

as an input (with a list of vectors or contextualised representations for the different parts of the sentence) 

and produces one predicted category. Successful implementations include Recurrent Neural Networks 

(RNNs), especially Long-Short Term Memory networks (Hochreiter and Schmidhuber, 1997[30]; Graves 

and Schmidhuber, 2005[31]) and Gated Recurrent Units (Chung et al., 2014[32]). 

22. Since 2018, the performance of text classification models has dramatically improved with the 

introduction of language models. These models implement the different steps described above, from 

                                                
1 The process of assembling text into different groups and giving these groups a name or concept ex-post is called 

clustering and uses radically different algorithms. These techniques fall outside the scope of this study and are 

therefore not discussed here. 
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feature extraction to classification, within a single architecture relying on Artificial Neural Networks. The 

models’ weights are trained on huge corpuses of textual data to acquire a general knowledge of language. 

ULMFiT (Howard and Ruder, 2018[33]) then BERT (Devlin et al., 2018[34]) are the two milestones models in 

this field. Other, more recent, models have improved their performance: RoBERTa (Liu et al., 2019[35]) 

proposed by Facebook AI in 2019 and building on BERT, XLNet (Yang et al., 2019[36]) and GPT2 (Radford 

et al., 2019[37]). However, for the purpose of this project, the improvements brought about by these latter 

models are marginal, and come at the cost of utter complexity.  
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Skill information in Burning Glass data 

23. The present work relies on data transmitted by Burning Glass in 2019.  The dataset includes 

information on more than 200 million job ads2 gathered online between 2012 and 2018 across six English-

speaking countries: Australia (AUS), Canada (CAN), New Zealand (NZL), Singapore (SGP), United 

Kingdom (GBR) and United States (USA). Data for 2007, 2010 and 2011 are also available, but for the 

United States only. Data for Australia and New Zealand are provided in a single file, hence the statistics 

below are offered for both countries jointly.  

24. The Burning Glass dataset contains standardised information retrieved from job postings using 

more than 45 000 online sources. It includes job characteristics such as detailed industry and occupation 

codes, location, posting date, name of the employer, and requirements in terms of education, professional 

experience, and skills. This great level of detail allows analysing job requirements within - rather than only 

across - occupations, sectors, and locations. Such granular analyses usually cannot be performed with 

traditional data sources. Furthermore, since Burning Glass data are updated more frequently than 

administrative datasets and surveys and often in real or quasi-real time, they also allow for an earlier 

detection of emerging trends than previously possible.  

25. A number of existing studies describe the representativeness of Burning Glass data. Carnevale, 

Jayasundera and Repnikov (2014[38]) show that, for the United States in 2006-2013, the aggregate number 

of job postings in Burning Glass strongly correlates with the number of job openings reported in the Bureau 

of Labor Statistics Job Openings and Labor Turnover Survey (JOLTS). If Burning Glass data overrepresent 

openings for high-skilled jobs, this feature is constant over time (Deming and Kahn, 2018[1]). Carnevale, 

Jayasundera and Repnikov (2014[38]) estimate that, in the U.S. files, state, city, occupation title, major 

occupation group, skills, and education are correctly reported for at least 80% of observations with non-

missing information, while accuracy is lower for minor occupation groups, and industry codes. Recent 

OECD work (Cammeraat and Squicciarini, 2021[39]) has also analysed the representativeness of Burning 

Glass data against official employment data at the occupational level, showing that for the period 2010-

2018, for the majority of countries, Burning Glass data is of sufficiently good quality to conduct policy 

analyses. Representativeness concerns exist for Canada and New Zealand, but issues emerge mostly for 

the years prior to 2015 and representativeness has improved since.  

26. To identify skills required to perform the job, Burning Glass analyses the text of each job vacancy. 

This information is processed and standardised, e.g. by removing duplicates, or by treating differences in 

spelling for the same skill, with the notable exception of British versus American English (e.g. 

“Organizational skills” in CAN and USA but “Organisational skills” in AUS, NZL, SGP and GBR). Skill 

keywords, however, may still include acronyms (e.g. “ADHD Tutoring”).  

27. These keywords include skills in the sense which is commonly understood (e.g. “Analytical Skills”), 

but also knowledge (e.g. “Food Safety” or “Environmental Policy”) and abilities (e.g. “Detail-Oriented”). 

                                                
2 217 461 987 more precisely. 

3 An overview of the data 
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While there is no easy way to sort Burning Glass skills into these three conceptual categories in an 

automated way, a first assessment suggests that skill keywords mostly capture knowledge areas.  

28. In total, there are 17 511 different unique skill keywords (henceforth “skills”) across all years and 

countries: 

   8 595 (49%) are common to all five countries or areas (ANZ, CAN, SGP, GBR, USA);  

 10 476 (60%) are common to at least four countries; 

 12 913 (74%) are common to at least three countries; 

 15 259 (87%) are common to at least two countries; 

   2 115 (12%) are unique to one country. 

29. The fact that some skills are unique to one or few countries stems from two major factors. First, 

some skills are so rare that they appear only once or twice in the whole dataset, and consequently, in a 

single country and year. Second, several skills are country-specific for geographical or historical reasons 

(e.g. “Knowledge of Aboriginal Heritage Law” in ANZ or “Inuit Health” in CAN). As explained in the section 

below, the supervised methodology is robust to the rarity of skills: as long as rare skills are well defined, 

they can be well classified by the algorithm.  

30. Likewise, cultural norms, features of the posting platform, or simply employers’ choices and habits 

in writing may introduce differences across skills even when some keywords are actual synonyms, which 

may inflate the overall number of skills available in the dataset. While these differences cannot be identified 

ahead of processing the data, they will be factored in henceforth, when constructing the classification. In 

fact, the methodology proposed below aims precisely to classify synonyms under the same broader 

category. 

31. Nonetheless, some job postings that Burning Glass retrieved online have no skill requirements 

information. Table 1.  shows the proportion of all job ads for which skill requirement information is available, 

per country and per year. This proportion is particularly high in the US, where more than 98% of job ads 

contain skill requirements (except for the year 2018 where this proportion is slightly lower). The availability 

of skill information is the lowest and most heterogeneous in Canada: depending on the year, the 

percentage of observations with non-missing skill requirements ranges between 83% and 98%. In other 

countries, the share of observations with missing skill information is stable at around 10% across the years.  

Table 1. Percentage of observations with non-missing skill requirements 

 
AUS-NZL CAN SGP GBR USA 

2007     98.5 

2010     98.3 

2011     98.6 

2012 93.0 97.7 88.9 91.6 98.6 

2013 88.6 96.9 90.9 89.9 98.9 

2014 90.0 87.3 90.2 90.5 98.9 

2015 91.2 84.5 92.2 89.9 99.0 

2016 90.3 83.4 93.8 89.2 99.1 

2017 90.8 92.1 93.6 89.9 99.1 

2018 90.8 87.4 93.6 89.7 95.0 

Source: OECD calculations based on Burning Glass data. 
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32. While it cannot be excluded that a lack of skill requirements in a posting is caused by the failure of 

Burning Glass’s algorithm to retrieve such information from the text of the job advertisement, many job 

postings simply do not report any precise skill requirement. This is the case, for instance, of jobs for which 

requirements are implicitly conveyed by the job title or by the education requirements mentioned in the job 

ad. While the existence of implicit skills has important consequences for analysis, it does not affect the 

outcome of the taxonomy construction as approached in this study, insofar as only the skills contained in 

the Burning Glass dataset need to be classified.  

33. Annex A.1 shows similar figures on job postings with non-missing skill information, broken down 

by occupation (SOC codes, truncated to the first 3 digits). For the vast majority of occupations, the share 

of posting without skill information is lower than 10%. Notable exceptions include occupations 

corresponding to codes 39-4 (funeral workers), 45-1 (supervisors of farming, fishing, and forestry workers), 

45-2 (agricultural workers), and to a lesser extent codes 17-1 (architects) and 53-5 (water transportation 

workers).  

34. Job ads that do list skills requirements contain on average 7.8 skills keywords (median equal to 

5). Most job ads (>98%) require less than 20 skills (Figure 1), and a very small number of ads require more 

than 300 skills. This likely stems from errors in Burning Glass parsing technique, or from the fact that these 

postings are probably not unique job openings but rather collections of offers. As the classification 

approach in this study does not exploit additional information contained in job postings other than skill 

keywords and their meaning, these incongruences do not affect the outcome of the classification exercise. 

In the present work, therefore, all skills are included and treated equally.  

Figure 1. Distribution of the number of job ads per number of skills required  

 

Note: This graph shows data for jobs ads with 5 to 50 skill requirements, for the sake of readability. These represent 94% of job ads in the 

dataset.   

Source: OECD calculations based on Burning Glass data. 

35. Table 2 presents summary statistics of the dataset by country, focusing on skill requirements. The 

United States, and to a lesser extent the United Kingdom, account for the vast majority of job postings with 

at least one skill requirement. US-based offers also gather significantly more skills (16 048) and country-

specific skills (1 497) than the others. The average number of skills per ad varies from 5.4 for Australia-

New Zealand to 9.4 for Canada. 
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36.  

Table 2. Summary statistics of the skills files in Burning Glass data 

  AUS-NZL CAN SGP GBR USA 

Number of job ads with at least one skill requirement 6 974 051 6 487 666 3 489 531 52 393 082 148 117 657 

Number of distinct skills 11 608 12 979 10 881 13 238 16 048 

Number of country-specific skills 75 20 283 240 1 497 

Average number of skills per ad 5.4 9.4 7.4 5.7 8.6 

Source: OECD calculations based on Burning Glass data. 

The O*NET+ taxonomy  

37. The starting point for the construction of a pre-set skills taxonomy was the O*NET database from 

the U.S. Department of Labor. The database was created in 1998, building on its predecessor the 

Dictionary of Occupational Titles (DOT), and is updated on a regular basis. O*NET contains a wealth of 

information on occupations, including the skills, knowledge and abilities needed to work in each of the 

almost 1 000 occupations. Most of the occupational information, including knowledge requirements, is 

collected from job incumbents through surveys. Skill and ability requirements are determined by 

occupational analysts, who take information on tasks, knowledge, vocational preparation, work activities 

and work styles from the incumbents’ surveys as a starting point (Tsacoumis and Willison, 2010[40]). In the 

O*NET database, the skill, ability and knowledge requirements of occupations are measured both in terms 

of importance and level. The former indicates whether the particular skill, knowledge or ability is important 

to perform the job. The latter indicates the level of mastery or proficiency in that skill, knowledge, or ability 

needed for the job.3 The latest version of the database contains 33 knowledge types, 35 skills and 52 

abilities. O*NET defines skills as “developed capacities that facilitate learning or the more rapid acquisition 

of knowledge”, abilities as “enduring attributes of the individual that influence performance”, and knowledge 

as “organized sets of principles and facts applying in general domains”. While the distinction between skills 

and abilities is rather subtle, the difference compared to knowledge is clearer. For example, O*NET 

contains both Mathematics Knowledge and Mathematics Skills, the former being defined as “knowledge of 

arithmetic, algebra, geometry, calculus, statistics, and their applications” and the latter as the capability to 

use mathematics knowledge to solve problem. All of the O*NET skills, abilities and knowledge types have 

been grouped into more aggregate categories by the authors of this study, as reported in Table B.1.   

38. As O*NET is developed by the Bureau of Labor Statistics in the United States, it is geared towards 

the occupational content of jobs in the labour market in the United States. Despite this, O*NET has been 

regularly used for the analysis of countries other than the United States. The assumption that skill 

measures from one country can be generalised to other countries has been tested and largely holds 

(Cedefop, 2013[41]; Koucký, Kovařovic and Lepič, 2012[42]; Handel, 2012[43]). Handel (2012[43]), for example, 

finds that occupational titles refer to very similar activities and skill demands across different countries. 

Specifically, high correlations between O*NET scores and parallel measures from the European Social 

Survey, EU Labour Force Survey, Canadian skill scores, the International Social Survey Program, and the 

UK Skill Survey are found, with average correlations of 0.80. Other than a handful of occupational skill 

requirements that exhibited significant cross-national variation (i.e. prior experience required, training 

required, and job learning times), Handel (2012[43]) found that most skill scores can be generalised to other 

countries with a reasonable degree of confidence. A caveat should, however, be raised about the use of 

                                                
3  Ratings on Level are collected on a 0-7 scale, and ratings on Importance are collected on a 1 ("Not Important") - 5 

("Extremely Important") scale. 
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O*NET to describe skills and tasks of occupations in low-income countries, as these could differ 

significantly in terms of technology and regulatory context compared to the United States.  

39. The O*NET information on skills, knowledge and ability requirements has been used extensively 

in labour market research. For example, Deming (2017[44]) uses the database to measure the extent to 

which occupations use non-routine analytical tasks, service tasks, and social skills. Consoli et al. (2019[45]) 

use O*NET skills, abilities and knowledge requirements to determine the routine intensity of occupations, 

building on earlier work carried out with O*NET’s predecessor DOT (e.g. Goos, Manning and Salomons 

(2014[46])). The OECD Skills for Jobs Database uses O*NET to map occupational imbalances into 

shortages and surpluses of skills, abilities and knowledge types (OECD, 2017[47]). 

40. Given the wide use of the O*NET database, its long history, and the fact that it is built on expert 

views, the skills, knowledge types and abilities, and the hierarchical structure of those, serve as an natural 

starting point for the creation of a taxonomy to use for classifying the Burning Glass skill keywords.4 

However, this database also has some shortcomings.  

41. One of the key gaps in the O*NET skills, knowledge and abilities classification is its limited 

inclusion of digital skills. In light of the growing importance of these skills, and the frequency with which 

they appear in online vacancies, including more detailed digital skills would increase the usefulness of the 

taxonomy for the purpose of the classification exercise. O*NET’s digital skills are limited to: i) knowledge 

of computers and electronics, and ii) programming skills. In order to bring in a more detailed digital skills 

component to the classification, these two components were replaced by a set of six broad digital skills: 

Digital content creation; Digital data processing; ICT safety, networks and servers; Office tools and 

collaboration; Software; and Computer programming. These groups were created based on the ESCO 

(European Skills/Competences, Qualifications and Occupations) classification that includes similar 

categories.5  

42. In addition to these digital skills, the ESCO classification is also used to add a set of attitudes and 

values to the taxonomy. These are not part of skills, knowledge types and abilities in O*NET6, but feature 

frequently among skill keywords in job vacancies as reported by Burning Glass. While the ESCO 

classification includes 3 “values” and 16 “attitudes”, for the purpose of the present study these categories 

are grouped into one “values” group and three “attitudes” groups.    

43. This revised O*NET classification, with expanded digital skill categories and the additional “values” 

and “attitudes” categories, serves as the baseline taxonomy for the mapping of Burning Glass skill 

keywords in this study. When using this revised O*NET classification for the training set (see section 4), a 

few practical challenges emerged. Some of the knowledge, skills and abilities groups actually refer to very 

similar concepts. For example, O*NET contains information on the requirements of mathematics 

                                                
4 The lowest level of disaggregation of O*NET skills and knowledge types and the intermediate level for abilities is 

used as the baseline for the creating of the O*NET+ taxonomy. Given that abilities have three levels of disaggregation, 

while skills and knowledge only have two, the same level of disaggregation is used for the three types of requirements. 

Some ability categories are dropped, as they are sufficiently captured by other skills categories or have limited 

relevance in the classification exercise (i.e. memory, perceptual abilities, spatial abilities, attentiveness, and verbal 

abilities).  

5 ESCO contains the following subgroups within its digital skills category: programming computer systems; setting up 

and protecting computer systems; accessing and analysing digital data; using digital tools for collaboration, content 

creation and problem solving; using digital tools to control machinery. The latter category has not been kept in the 

taxonomy exercise, as it fits better in some machine operation-related skills, knowledge and abilities groups. By 

contrast, a “software” group was added in light of the high frequency of specific software keywords in the Burning 

Glass data. 

6 Nonetheless, the O*NET database contains information on work styles, which are similar to the values and attitudes 

from the ESCO classification.   
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knowledge, mathematics skills, and mathematical reasoning. While conceptually these are all different 

from one another, this distinction is hard to capture in real-life vacancy data. This points towards an 

important conceptual difference between the O*NET database and the taxonomy intended for classifying 

the Burning Glass skills: the skills, knowledge types and abilities in O*NET can be partially overlapping, 

whereas the groups in the desired taxonomy to use for the Burning Glass data need to be mutually 

exclusive. Put differently, a Burning Glass skill keyword could be classified in multiple O*NET categories 

as the keyword encompasses skills, abilities and knowledge in similar domains but, for the purpose of the 

machine learning classification exercise in this study, each keyword should only be allocated to one specific 

category in the taxonomy. This issue was particularly evident for skills keywords related to production and 

technology, for example, which could both refer to mechanics knowledge and installation or repairing skills, 

but also to certain skills related to business and management, which could relate to either economics and 

accounting knowledge or financial resource management skills. To facilitate the classification exercise, 

these O*NET categories were merged. The methodological approach and machine-learning algorithm 

proposed in the next sections are a consequence of the choice of classifying each skill in one category, 

and one category only.  

44. The Burning Glass data also contain various skill keywords that refer to specific industry 

knowledge, such as automotive industry knowledge. Since such skill requirements in job ads generally 

refer to a broad set of underlying skills and knowledge requirements, these keywords are hard to classify 

into one single group in the taxonomy and are therefore all put under a separate “industry knowledge” 

group. 

45. The final taxonomy, referred to as the O*NET+ taxonomy, contains 61 categories (see Table 3 for 

the full list). Three of those groups are coded separately, instead of relying on machine learning. Two of 

these categories refer to languages, one for “English” and the other for all non-English “foreign” languages. 

The latter is filled by calling an exhaustive list of all spoken languages (and broken down by whether it is 

the local language in the region/country or not) which currently contains 32 languages. A third category is 

filled automatically with Burning Glass skill keywords containing the “industry knowledge” phrase (297 

keywords in the current version of the dataset). Finally, all skill keywords containing the phrase “Working 

with Patient and/or Condition: XXX” (416 skill keywords) are coded to be classified into the “Medicine and 

Dentistry” category. As a result, the Machine Learning model has to classify a skill into one of 58 categories. 

46. While 61 categories are easier to handle in analysis than 17 000 skills, some research may need 

even more aggregate categories. A hierarchy is therefore proposed, where the 61 categories are grouped 

into 16 broader categories. Some of these broader categories are composed exclusively of skills, 

knowledge types or abilities, whereas others mix these different concepts when skills, abilities and 

knowledge pertain to the same or very similar domains. This is the case, for example, of the “production 

and technology” higher-level category, which contains both “service orientation” (a skill) and “customer and 

personal service” (knowledge). 
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Table 3. The O*NET+ taxonomy 

Broad 

category 

Category label  
Broad category 

Category label 

Attitudes 

Adaptability/resilience 

Cognitive Skills 

Originality 

Motivation/commitment Quantitative Abilities 

Self-management/rigour Reasoning and Problem-solving 

Work Ethics Learning 

Arts and 

Humanities 

Fine Arts 

Communication 

Active Listening 

History and Archaeology Reading Comprehension 

Philosophy and Theology Speaking 

Business 

Processes 

Clerical Writing 

Sales and Marketing Communications and Media 

Customer and Personal Service 

Digital 

Office Tools and Collaboration Software 

Production and 

Technology 

Telecommunications Digital Content Creation 

Building and Construction Digital Data Processing 

Engineering, Mechanics and Technology ICT Safety, Networks and Servers 

Design Computer Programming 

Food Production Web Development and Cloud 

Technologies 

Production and Processing 

Resource Management 

Time Management 

Transportation Management of Material Resources 

Equipment Selection Management of Financial Resources 

Quality Control Analysis Management of Personnel Resources 

Installation and Maintenance Administration and Management 

Medicine 
Medicine and Dentistry 

Social Skills 

Coordination 

Psychology, Therapy, Counselling Persuasion and Negotiation 

Law and Public 

Safety 

Law and Government Social Perceptiveness 

Public Safety and Security Judgment and Decision Making 

Science 

Biology Training and Education Training and Education 

Chemistry 

Physical Skills 

Psychomotor Abilities 

Geography Auditory and Speech Abilities 

Physics Visual Abilities 

Sociology and Anthropology Physical Abilities 

Industry Specific 

Knowledge 

Industry Specific Knowledge 
Languages 

Local language 

Foreign language 

Source: OECD elaboration on O*NET and ESCO.  



DELSA/ELSA/WD/SEM(2021)10  21 

  
Unclassified 

 

47. A supervised learning approach is used to map Burning Glass skills onto the predetermined 

O*NET+ categories, based on the skills’ definition. The classification is done using BERT, a Natural 

Language Processing model that can perform sentence classification. BERT is a deep learning algorithm 

that contains mathematical representations of words (vectors), learned from external sets of texts. It is able 

to summarise the vectors corresponding to different words in a sentence (in the present case, in the skill’s 

definitions) into a single vector, to perform the classification of this sentence. The algorithm relies on the 

definitions of skills and on the manual classification of 500 examples from which it learns how to associate 

categories to skills (training set). The skills’ definitions are extracted from ESCO and Wikipedia, as 

specified further here below.   

The BERT algorithm 

Bidirectional Encoder Representations from Transformers 

48. BERT (Bidirectional Encoder Representations from Transformers) is a language model developed 

by Google AI Language and published in 2018 (Devlin et al., 2018[34]). In Natural Language Processing 

(NLP), language models are neural network architectures that are able to process textual information, 

especially sentences. To that end, most recent language models build a mathematical representation for 

each word: a vector called an embedding. The rules to construct and process embeddings through the 

network (sometimes called the encoding process) are what define the language model.  

49. A single word, however, can have different meanings depending on the context in which it is used 

(e.g. the prison cell, the biological cell, the cell phone, etc.), and the vector representation of a word has to 

evolve according to the context in which it is read. Therefore, for a given sentence, BERT produces 

different successive iterations of embeddings (twelve iterations in total7) where each new iteration takes 

into account all the embeddings from the previous iteration. When BERT computes a new iteration, i.e. a 

more specific and relevant representation for a word in the sentence, the choice of other words to consider 

is given by the so-called Transformer (Vaswani et al., 2017[48]). The Transformer is able to look at different 

parts of a sentence with different focus, a process called attention.8 

                                                
7 The number 12 is a trade-off between model size and efficiency. Empirically, more layers tend to offer a better 

understanding.  

8 The adjective “bidirectional” in the BERT acronym refers to the fact that the attention is drawn both to the left and 

right of the sentence, contrarily to other models that only look at the preceding words (such as Recurrent Neural 

Networks or GPT). 

4 Mapping skills onto the O*NET+ 

taxonomy: the methodology 



22  DELSA/ELSA/WD/SEM(2021)10 

  
Unclassified 

50. Transformers gather knowledge about the words that are most appropriate through a process of 

trial and error. For each iteration, the Transformer takes an existing well-constructed sentence, masks 

randomly some words, and asks BERT to recover the masked words (Liu et al., 2019[35]).9 BERT predicts 

a probability for each word in its vocabulary to be the masked one. Depending on the precision of the 

guess, an error is computed and used to improve the model’s ability to recover a masked word in the next 

iteration. Since each improvement is marginal, a tremendous amount of data is needed to train the whole 

model. Indeed, BERT has been trained on millions of sentences extracted from BookCorpus and Wikipedia 

(respectively 800 and 2 500 million words). BERT thus acquired a general knowledge of language that is 

used and summarised in embeddings. This process is called a semi-supervised learning step and BERT 

is a pre-trained model.  

51. Several versions of BERT are available. This study uses BERT (Base), which is the language 

model that provides the best compromise between accessibility, performance, and widespread use in the 

literature. Annex C discusses other versions of BERT and other recent language models, and justifies the 

choice for BERT (Base) in detail. 

BERT for sentence classification: a synthesis of the approach 

52. The present study is aimed at one precise downstream application, i.e. the classification of Burning 

Glass skills into a small number of encompassing categories (the 58 O*NET+ categories presented above). 

The version of BERT used in this study does not work on the skill itself as a word, but on its definition, 

which is then transformed into an embedding to be classified. This adapted version of BERT is often 

referred to as “BERT for sentence classification”. Starting from the assumption that the definition of the 

skill contains all the sufficient information needed for the skill’s classification, the classification exercise 

consists in mapping each skill’s “embedded” definition into one of the 58 O*NET+ categories.10 

53. To achieve this goal, the definition of each Burning Glass skill is first processed through BERT to 

obtain the list of corresponding embeddings. Calling 𝑁 the number of words in the definition of each 

Burning Glass skill, and 𝐾 the dimension of one embedding vector11, applying the BERT algorithm yields 

𝑁 vectors12 with 𝐾 components for each skill keyword, where 𝑁 can vary between skills (different skills 

have definitions of different lengths). BERT then summarises the information contained in the sentence, 

hence in the 𝑁 embeddings into a single vector. To do so, an obvious solution would be to take the average 

of all 𝑁 vectors. However, the developers of BERT proposed a different approach that substantially 

improves the algorithm’s performance over using a mean vector: adding an additional fictitious word, called 

CLS token, which at the end of the encoding procedure represents the entirety of the information contained 

in the sentence.13  

                                                
9 BERT was also trained with a second objective of predicting if two sentences follow each other or not. Later work 

showed that this objective can be dropped without affecting the results (“RoBERTa: A Robustly Optimized BERT 

Pretraining Approach” - Liu et al., 2019). 

10 The approach chosen to build the present classification asks each skill to be classified in one category only; 

assigning multiple categories to each skill based on the 58 values of the vector is therefore inconsistent with the 

methodology proposed here. Researchers interested in assigning multiple plausible categories to a skill should 

investigate the use of different methodologies (multiclass labelling).    

11 In BERT, 𝐾 =  768. 

12 In fact, more than N, because of tokenisation - see Annex C. 

13 Using an average vector of the different embeddings has the limitation that less relevant words in the definition (e.g. 

linking words and connectors such as  “a”, “the”, or “of”) obtain the same weight as more relevant words. This dilutes 

the informative power of relevant words when embedded. 
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54. Figure 2 proposes a graphical, simplified representation of the process as described so far. In this 

example, the algorithm must classify the skill “Marketing” into one of the 58 outstanding categories of the 

ONET+ taxonomy. The definition of “Marketing” is composed by various words, in pink (“marketing”, “is”, 

“wants”, etc., including the fictitious CLS token). The initial embeddings of these words (in yellow) are 

elaborated by BERT through 12 layers of processing, to add contextual information to each word 

embedding. This process yields the contextualised embeddings (in green, at the top of the box), including 

the embedding of the CLS token, identified as “C” in the figure. 

55. 𝐶 = (

𝑐1

⋮
𝑐𝐾

) 

Figure 2. The keyword “Marketing” and its definition processed through BERT  

  

Source: OECD elaboration on Devlin et al. (2018[34]). 

56. Having obtained a single vector for the definition of every skill, this must be associated to one of 

the 58 O*NET+ classes. The standard method proposed by BERT for sentence classification is pictured in 

Figure 3 in a simplified form.14 It relies on a function mapping a real vector into a positive vector whose 58 

components sum to 1 (one component for each O*NET+ class). It is traditionally called “softmax function” 

in the literature and is defined by: 

𝜎(𝑐)𝑗 =
𝑒𝑐𝑗  

∑ 𝑒𝑐𝑘𝐾
𝑘=1

 

57. for all j=1,…, 58. The output of the softmax function is thus a vector of 58 values ranging from 0 to 

1, a transformation of the original vector corresponding to the skill’s definition. After the optimisation step 

(see next section), the highest of the 58 values within this vector corresponds to the category where the 

model predicts the skill should be classified. For example, in Figure 3 the highest value is 0.86 and the 

corresponding category is “Sales and Marketing”.  

                                                
14 More precisely, the methodology relies on a one-layer feed-forward neural network with a softmax output, where 

the term “one-layer” highlights that the approach uses only one matrix operation that maps the 768-component vector 

into a 58-component vector, and “feed-forward” distinguishes this approach to others previously used in the literature, 

such as recurrent networks. The meaning of “softmax output” is explained in the main body of the text. 

 

 

Initial embeddings 

Contextualised 
embeddings 
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Figure 3. The feed-forward network classifies the C token in “Sales and Marketing” 

 
 

Source: OECD elaboration on Devlin et al. (2018[34]). 

Optimising the algorithm: fine-tuning BERT 

58. Optimising the assignment of a category to each skill, as explained in the previous section, relies 

on the possibility for the algorithm to “learn” which of the skill-category associations it produces are 

incorrect and should therefore be improved upon in the following iteration of the algorithm. In a supervised 

setting, this is obtained by providing the algorithm with a subset of skill-category combinations that are 

assumed to be correct because they are produced by the researchers, who manually classify a subset of 

Burning Glass skills into their respective category. This is the so-called training set (see below for more 

details about its creation).  

59. For each skill in the training set, the algorithm sees the pre-assigned, “true” category, and 

compares it to the output of the softmax prediction, i.e. the one predicted by the model. An “error”, based 

on the difference between the predicted category and the “true” assigned category is computed. The 

algorithm’s   parameters are then chosen to minimise this error, following an iterative process. Through 

this process, the algorithm “learns” how to classify the Burning Glass skills, both those included in the 

training set and the others. 

60. For each skill, the error that is minimised is a measure of dissimilarity, or cost function 𝑍, between 

two vectors, 𝑝 and 𝑞, where 𝑝 is the “true” vector (which has value zero everywhere except at the index 

corresponding to the true category as assigned by the researcher, for which it has value 1) and 𝑞 is the 

vector of predictions from the model (with values ranging from 0 to 1, with 58 possible values). Also called 

cross entropy, Z can be written as: 

𝑍(𝑝, 𝑞) = − ∑ 𝑝𝑖 log(𝑞𝑖)

𝑀

𝑖=1

 

Prediction: « Sales and Marketing » 
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61. This error measure is used to improve the features of the algorithm (parameters) via back-

propagation: the error is used to update the last layer and this update is then used to compute new 

parameters for the second to last layer, etc. This process is repeated for the 12 layers of the model, and 

on each sub-sample of the training set, until the model’s performance no longer improves. This process is 

called fine-tuning the model for the classification task. 

About the softmax output 

62. As mentioned, the final output of the optimisation process is a positive vector whose values sum 

to 1. In what follows, the vector’s maximum value, which defines the predicted category, is called 𝑞, i.e. 

𝑞 = max (𝑞𝑖) for each skill 𝑠, where (𝑞1 …  𝑞58) is the vector of predictions from the model as in the previous 

paragraph. In Figure 3, for instance, 𝑞 = 0.86.  

63. This vector (including 𝑞), however, cannot be interpreted as a set of unbiased probabilities 

assigning a skill to one of the 58 ONET+ categories. While predictions derived from multinomial logistic 

regressions or shallow neural networks are representative of the true underlying probability distribution 

with which items get assigned to a category, recent work has shown that this is no longer the case for 

modern neural networks (Guo et al., 2017[49]).15  

64. In light of such bias, an observed 𝑞 = 0.86 cannot be interpreted as the skill having an 86% chance 

of being correctly classified. For the same reason, the values of 𝑞 of two distinct skills cannot be compared. 

Furthermore, while different values of 𝑞𝑖 for the same skill can be ranked, and indeed max(𝑞𝑖) = q, the 

actual numerical distance across 𝑞𝑖 ’s for the same skill cannot be interpreted, and the vector output cannot 

be used as a set of weights for the importance of the 58 categories for the given skill. In other terms, the 

information contained in 𝑞𝑖 is purely ordinal.  

65. That said, 𝑞 still conveys important information about the probability of misclassification or the 

confidence with which the algorithm classifies the keywords, since it is correlated with the model’s 

accuracy. This notion will be developed in Section 5. 

Training BERT for the purpose of this study 

Finding definitions 

66. Relying on the definition of a skill for its classification requires a definition for each of the 17 000 

skills in Burning Glass. The model does not impose constraints to the nature or length of the definition, but 

its likelihood to classify the skill unambiguously increases with the informative power of the definition.  

67. The first source of definitions is the European Skills/Competences, qualifications and Occupations 

(ESCO) database, which includes 13 485 skills and their definition. Only a few of Burning Glass skills, 

however, have the same designation in Burning Glass and ESCO, allowing for a perfect match. 

                                                
15 The source and potential solving of this type of bias in the predicted probabilities  is still an open field of research 

(Sensoy, Kaplan and Kandemir, 2018[57]; Możejko, Susik and Karczewski, 2018[58]). The prevalent explanation offered 

in the literature is the lack of a default category to represent uncertainty: if the model encounters a skill that does not 

fit in any of the predetermined categories, it has no options to discard or flag the observation, as a prediction is wanted 

for all skills. The model is thus forced to produce a value for each of the predetermined categories.    
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Approximate matching16 extends the overlap between the two databases. In total, an ESCO definition is 

attributed to 674 Burning Glass skills. 

68. The remaining definitions are found by scraping Wikipedia. A Python module that wraps the 

MediaWiki API retrieves the summary of any Wikipedia article. The module is flexible enough to search for 

variations of skill keywords. For instance, requesting “Business Planning” will redirect to the “Business 

Plan” article. The retrieved definition consists of the first lines of the article. Wikipedia is a widely used 

corpus for research in computational linguistics, information retrieval and natural language processing 

(Medelyan et al., 2009[50]). Its ever-growing size, structure, wide coverage, and high quality constitute 

important advantages over other corpuses, and attract many researchers in these areas (Yano and Kang, 

2016[51]). Another interesting feature of Wikipedia is that it covers a wide variety of scientific topics, in most 

cases with a high degree of sophistication (Thompson and Hanley, 2017[52]). This is particularly relevant in 

the context of this work since many keywords from Burning Glass are highly specialised terms (e.g. “Veritas 

NetBackup”, “ARP4754”).  

69. The combined approaches produce a definition for 99% of the Burning Glass skills. The remaining 

180 skills (accounting for 0.03% of all Burning Glass skills) cannot be found in either ESCO or Wikipedia, 

often because they are too specific or refer to new fields or technologies (e.g. “AdvantX Software”, 

“PyBrain”, “Roostify”). Consequently, these skills are not classified.  

The training set 

70. The optimisation of the model requires a labelled dataset, referred to as training set. A training set 

is a collection of examples of skills and their definition with their correct label, i.e. the category in which 

they should be classified. The training set indicates to the algorithm how the information in the embedded 

definition maps onto one of the O*NET+ categories. The algorithm therefore leverages at the same time 

knowledge from BERT and from the training set. 

71. The quality of the training set has a first-order impact on the performance of the classification 

algorithm. A first dimension of interest is the size of the training set. A longer list of skills with their matched 

correct label has the potential to extend the information set the algorithm can leverage in the optimisation 

exercise. That said, no “ideal” size of the training set exists, and increasing the set’s size fast hits a time 

and resource constraint. Furthermore, adding classified skills may fail to provide additional information, for 

instance when one adds a synonym of a skill already included in the training set, or a closely related 

concept.  

72. Two other features of the training set are of primary importance: homogeneity and universality. 

Homogeneity requires that approximately the same number of skill keywords be included in each category. 

Without homogeneity, the model may have insufficient knowledge about some categories, and could fail 

to identify the corresponding skills or be tempted to prioritise categories that are overpopulated with skills 

in the training set. Universality requires that the training set include representative content in each category. 

Without universality, the model may miss some skills that are part of a category: for instance, having no 

film-related skills in the “Fine Arts” category of the training set will prevent the model to identify film-related 

Burning Glass skills as “Fine Arts”. 

73. In the present study, the training set is composed of 500 skills, a reasonable number in light of 

resource constraints. They were chosen as: 

  the 200 most frequent skills in Burning Glass, and 

                                                
16 To identify suitable approximate matches, first a vector is associated to each keyword using a TF-IDF vectoriser. 

Approximate matches are then defined as pairs for which the cosine similarity between the two vectors is higher than 

0.8. 
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  100 randomly sampled skills in Burning Glass,17 and  

  200 skills not appearing in Burning Glass but specifically chosen by the researchers.  

74. The latter have been selected by the authors of this study based on their knowledge and 

understanding of the different O*NET+ categories, in order to improve coverage of the different aspects of 

a category and therefore to ensure universality. Choosing the skills also helps improving homogeneity: 

categories whose skills are rare by default in Burning Glass would be otherwise given lower priority in the 

classification exercise, in virtue of the limited knowledge the algorithm would have of them. For categories 

disproportionally including skills that are rare in Burning Glass, a random sampling of Burning Glass would 

indeed fail to provide a sufficient amount of skills to complete the training set. Adding 200 out-of-sample 

skills ensures that each categories contain at least three skills in the training set.  

75. These 500 skills are classified manually by the authors into one of the 58 ONET+ categories. To 

bolster the quality of the training set, difficult cases are consistently cross-validated and discussed 

internally when necessary. Furthermore, randomly chosen pairs of skills with their attributed category are 

closely verified. Lastly, skills receiving two different categories from different researchers are thoroughly 

examined and disambiguated by the team, by cross-referencing each other’s answers to achieve 

consensus. This happens in 25% of the cases, meaning than the degree of agreement between 

researchers during this manual allocation exercise is equal to 75%. 

Implementation, training and choice of the hyper-parameters 

76. As mentioned, the algorithm learns from the training set, and each skill of the training set must be 

shown at least once to the model. As the model is unable to process all 500 skills at once for computational 

reasons, BERT splits the training set into subsets. Instead of processing them one by one, subsets are 

grouped in batches of fixed number of skills (the batch size). This improves and accelerates the algorithm’s 

learning. An epoch is counted each time all batches have been processed by the model. Usually, neural 

networks are trained on several epochs. The extent to which the parameters of the model change with 

each update depends on the learning rate. The batch size, the number of epochs and the learning rate 

are the so-called “hyper-parameters” that must be chosen before the training begins, and can depend in 

an important way by the availability of computing power.18 While they influence the final performance of 

the model, the optimal value for each of them always depends on the problem at hand. To select the best 

possible values, the performance of the algorithm is benchmarked under different combinations of hyper-

parameter values.  

77. The first definition of performance is given by the loss, i.e. the sum of the cost function (the cross-

entropy defined in the previous section) over all training samples. A lower loss means that the model has 

learned to minimise the distance between its output distribution and the “true” distribution provided by the 

training set. Another definition of performance can be given by the accuracy, which is the proportion of 

skills that the model correctly allocates to the appropriate category. Other indicators of performance and a 

more in-depth reflection on the relevance of accuracy are proposed in Annex D.  

78. Deep neural networks may have a tendency to learn by heart the training data and loose 

generalisation capacity (a problem known as over-fitting). Thus, the performance cannot be measured on 

the training data, as it would overestimate the performance on unseen data. A test set, which includes 

400 skills randomly selected from Burning Glass, which are labelled but not leveraged during the 

algorithm’s training, can be used to compute an unbiased assessment of accuracy. Accuracy is calculated 

by asking the trained model to predict the category of the sub-set of keywords for which the classification 

                                                
17 Sampled with weights proportional to their frequency in Burning Glass data. 

18  Other hyper-parameters exist besides batch size, number of epochs and learning rate, but they have marginal 

impact on the results and are therefore neglected in this discussion. 
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is already known, i.e. the test set, and calculating the frequency of misclassified keywords. In the present 

study, the performance of the model is relatively stable, i.e. it does not dramatically change for different 

values of the hyper-parameters. The specific values of the hyper-parameters that maximise accuracy are 

therefore chosen to produce the final output of this study.19  

                                                
19 The specific values are the following: epoch=30; batch size=8; learning rate=2^(-5); maximum number of tokens for 

a definition=256. 
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79. The approach described so far yields a classification of each Burning Glass skill keyword into one 

ONET+ category. While reporting the full classification in a document is impossible, this section describes 

the results of the taxonomy exercise and presents descriptive statistics of the model’s accuracy. Section 6 

further describes the outcome of the classification by describing skills demand in the Burning Glass 

dataset, once skills are grouped according to the proposed classification.  

A brief description of the classification output 

80. The final taxonomy contains 17 331 skills grouped into 61 categories. There are 289 skills per 

category on average, while the median number of skills per category is equal to 108. 

81. Figure 4 shows the absolute number of keywords contained in each O*NET+ category. The most 

populated categories are “Medicine and Dentistry”, “Management of Financial Resources”, and “Biology”, 

including respectively 3 895, 1 070, and 1 044 keywords. The disproportionate content of the “Medicine 

and Dentistry” category stems from the high frequency of health-related job postings in the Burning Glass 

database (US SOC occupations 29 and 31 represent 12.4% of the total number of job postings in the 

pooled dataset20), as well as from the medical discipline’s propensity to include a vast range of 

specialisation and tools, which translate in many unique or very specific skills in the Burning Glass dataset 

(e.g. specific medical conditions). The figure, however, does not suggest that skills in Medicine & Dentistry 

are in highest demand in online job postings, since it does not factor in the frequency of these keywords 

in job postings. 

82. On the other hand, skills relating to human values or personality traits (e.g. falling into categories 

of “originality”, “motivation and commitment”, “adaptability and resilience”, “self-management and rigour") 

are very rare in the list of skills contained in the Burning Glass data.21 This may be the case because these 

competences are implicit and not clearly stated in the job advertisement, because employers do not use 

several synonyms to express the same concept, or because they are mentioned in the text of the job 

advertisement, but are not extracted by Burning Glass. The possibility that the algorithm is unable to 

classify appropriately the keywords related to values and personality traits cannot be ruled out completely, 

but it is not clear why the algorithm would perform worse for these skills than for others.  

                                                
20 These figures are calculated on the pooled dataset across countries and years. As a benchmark, in the United 

States, these two occupations represented 8.4% of the employed population (16 year olds and older) in 2018.  

21 This observation is based both on the fact that categories for attitudes and values are among the least populated in 

the taxonomy (see Figure 4), and on a visual inspection of Burning Glass skill keywords. 

5 The classification  
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Figure 4. Number of skills per O*NET+ category  

Panel A – Most populated categories (containing more than 100 keywords) 

 
   
 

Panel B – Least populated categories (containing less than 100 keywords) 

 

 

Notes: Pooled dataset: AUS, CAN, GBR, NZL and USA data, for the period 2012-2018.  

Source: OECD calculations based on Burning Glass data. 

Number of skills 
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Quantitative evaluation of the results 

Model accuracy  

83. As mentioned, accuracy is the proportion of skills that the model correctly allocates to the 

appropriate category. In the present context, it is the most important available indicator of the algorithm’s 

performance. The minimum accuracy measured on the test set with the optimal configuration of the model 

is 74%, but this rises to 85% when excluding from the sample the least frequent skills (appearing in less 

than 10% of job postings).  

84. Evaluating whether this degree of accuracy is satisfactory is not straightforward. Comparisons with 

the literature are seldom meaningful, as classification exercises can differ very much in nature, and often 

require a simpler classification of items into two categories only. For instance, the standard General 

Language Understanding Evaluation (Wang et al., 2018[53])  performs several tasks, but many are binary, 

such as assessing whether a sentence is an entailment, contradiction, or neutral with respect to another, 

or whether two questions are semantically equivalent. For these simpler classification tasks, BERT 

achieves accuracies ranging from 65 to 95%. The present classification exercise therefore achieves 

accuracy in line with other, simpler, real-world applications of the BERT model. 

85. The realised accuracy can also be compared with the hypothetical accuracy that naïve 

classification models would achieve, and with human accuracy in a manual classification. Customarily, two 

naïve models are proposed and used as benchmark: the random rule and the zero rule. Following the 

random rule approach, each skill is attributed to a category at random following a uniform distribution. The 

resulting accuracy is logically 1/61 ≈ 2%.22 Under the zero rule, the most populated category (as 

estimated on the training set, here “Medicine and Dentistry”) is attributed to all skills. This approach 

achieves a 14% accuracy. Finally, several experiments conducted during the validation of the training set 

indicate that humans agree only 75% of the time approximately. Additional evaluation metrics are provided 

in Annex D.  

86. Several reasons could be advanced to explain why some skills are not attributed to the correct 

category. First, many Burning Glass skills are vaguely phrased or incongruous (e.g. “Bowling”, “Human 

Guides”, “VTPSUHM7”, “HORVIP”, etc.). Even an expert could face difficulties to assign them to any 

category. Second, definitions of skill keywords may not be sufficiently long or precise for the model to 

understand fully the skills’ meaning. Note that this last point is not a property of rare skills. The process of 

acquiring a definition is independent from the frequency of the skill in Burning Glass. Thus, rare skills can 

still be well defined and well classified, as in the case, for instance, of skills falling in the “attitudes” category, 

and the methodology can be considered robust to the rarity of skills.  

Relationship between accuracy and q 

87. As previously explained, the value 𝑞 is the maximum value of the vector obtained after the 

optimisation process, and it defines the predicted category. While it cannot be interpreted as a probability, 

it is correlated with the model’s accuracy and hence can give an approximate idea of the confidence one 

can have in the quality of the classification output. 

88. Figure 5 shows the accuracy of the model as a function of 𝑞 (blue curve). Based on the final 

specification of the hyperparameters, for any 𝑞̂ in [0,1], the test set is restrained to the skills which have a 

q in [𝑞̂ − 0.05, 𝑞̂ + 0.05], and the accuracy is computed on this subset of the test set. The blue shade is the 

                                                
22 A less naive random rule would attribute skills to different categories using a weighted distribution estimated from 

the training set (based on the number of skills per category). This less naïve approach yields accuracy ~4%. 
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95% confidence interval for the blue curve23, and the grey curve represents the number of skills used to 

compute the accuracy. The 45-degree line is dashed and represents the locus of skills for which q and 

accuracy correspond. 

Figure 5. Accuracy as a function of 𝒒 

 

Note: x-axis reports values of q.  

Source: OECD calculations based on the test sample constructed from Burning Glass data. 

89. As mentioned in Section 4, accuracy is not equal to 𝑞, and indeed blue and dashed lines are not 

perfectly overlapping. However, accuracy and 𝑞 are positively correlated. This means that the model tends 

to be more accurate when it produces a high 𝑞, and that filtering out skills with a low value of 𝑞 can increase 

the global accuracy on the remaining skills classification. Table 4 provides the minimum value of 𝑞 needed 

to reach a given level of accuracy (as computed on the test set) and the number of skills remaining in the 

Burning Glass dataset when choosing such value of 𝑞. For example, an accuracy superior to 85% can be 

obtained by excluding the skills with 𝑞 < 0.55. By doing so, 11 222 skills (91% of observations in the skill 

dataset) remain in the dataset. 

90. The distribution of 𝑞 over all classified Burning Glass skills, shown in Figure E.1, is actually highly 

skewed to the left, meaning that the q value for a significant share of classified skills is close to 1. Excluding 

skills with low 𝑞 values therefore does not reduce significantly the number of skills to work with.  

Table 4. Accuracy as a function of 𝒒 

Desired accuracy 74% 80%  85% 90% 95% 

Threshold for q 0.00 0.35  0.55 0.74 0.85 

% of postings included 100 95  91 87 82 

Source: OECD calculations based on Burning Glass data. 

                                                
23 This confidence interval is computed assuming that each skill classification is a Bernoulli trial (correct/incorrect) with 

constant probability p. However, this assumption is likely violated, as the model is probably better at classifying some 
skills (e.g. Medicine) than others (e.g. Values). Therefore the values for the confidence interval should be considered 
suggestive.  
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Accuracy for broader categories 

91. Importantly, the predicted category is not necessarily far from the “true” category even when the 

model is not correct. As the O*NET+ taxonomy contains categories that are close in concept (“Computer 

Programming” and “Digital Data Processing”, for example), the algorithm may find it difficult to distinguish 

between two similar categories, especially when the skills’ definitions are short or ambiguous. Under a 

more aggregated version of the taxonomy, these categories may be merged into a single one, which the 

algorithm could now correctly identify as the relevant category for a given skill, even when the prediction 

was incorrect at the more disaggregated taxonomy level. This is relevant because 61 categories may still 

be too many in an empirical analysis, so that a more aggregated version of the taxonomy may be useful. 

Annex B describes a hierarchical mapping of the 61 ONET+ categories into 16 more aggregate categories.  

92. Using this taxonomy of broader categories, the algorithm achieves an accuracy of 82%. Since 

accuracy increases mechanically when considering fewer categories, the benchmark values need 

adjusting as well (Table 5).  

Table 5. Achieved accuracy and benchmark values for two level of aggregation of the final 
taxonomy 

 O*NET+ with 61 categories Higher level taxonomy with 16 categories 

Model accuracy 74% 82% 

Random rule accuracy 2% 6% 

Zero rule accuracy 14% 23% 

Source: OECD calculations based on the test sample constructed from Burning Glass data.  
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93. The validity of the classification can also be assessed indirectly, leveraging other sources of data 

and existing results from the literature. In this section, a first exercise compares the outcome of the 

classification of Burning Glass skills with data reported in O*NET. A second set of exercises proposes 

some descriptive statistics using the reclassified data, and compares them to the results obtained by the 

literature, with the goal of assessing their coherence. For simplicity, evidence in this section is generated 

from data for Canada in 2018, but similar analyses can be conducted for other countries and years.   

Comparison with O*NET 

94. This subsection compares the outcome of the classification of Burning Glass skills and data on 

skill requirements as reported in O*NET. Figure 6 correlates the share of job postings requiring at least 

one skill keyword in category c with the average importance*level value for O*NET category c, by 

occupation (U.S. SOC 4-digits). The association is not expected to be perfect, even if all skill keywords 

were perfectly classified. First, O*NET reflects the skill content of occupations in the entire economy, while 

Burning Glass data capture a snapshot of the online vacancy market, which is not expected to perfectly 

represent the entire labour market. Second, skill measures by occupation in O*NET and in Burning Glass 

are conceptually different: O*NET reports the level of a skill needed to perform one occupation and the 

importance of this skill for the occupation, while Burning Glass reports which skills are requested in which 

job advertisement, information which is here summarised as the share of job postings in one occupation 

that require a given skill.  

95. These caveats notwithstanding, the figure shows a positive and significant relationship between 

the two indicators, and one that also holds when looking at U.S. SOC 2- and 3-digit disaggregation levels, 

or when including 2-digit occupation fixed effects, which indicates that the correlation is not driven by one 

particular occupational group. 

6 Further validation 
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Figure 6. Correlation between the classification results and O*NET importance values, by 
occupation 

 

Note: One point corresponds to a skill category for one occupation (U.S. SOC 4-digits). Y-axis: importance*level value (rescaled to fall between 

0 and 1) for O*NET category c by occupation, averaged across all underlying 6-digit U.S. SOC occupations in the 4-digit occupation. X-axis: 

share of job ads requiring at least one skill in category c, by 4-digit occupation. Job postings with more than 20 skills and occupations with less 

than 200 observations are excluded to limit noise in the estimation. The blue line represents the linear prediction resulting from the regression 

of O*NET importance*level value of category c onto the share of job ads requiring at least one skill in category c. The 𝑅2 of this regression is 

equal to 0.19. The correlation between the two variables is equal to 0.52. Only categories that are exactly similar in O*NET and the classification 

are kept here (additional digital skills are thus absent, and merged categories are removed). 

Source: OECD calculations based on Burning Glass data for CAN (2018). 

Comparison with results from the literature 

96. As mentioned, a different, indirect way to validate the classification in this study is to replicate 

some of the evidence from the existing economic literature relying on Burning Glass or other data. This 

subsection presents three such examples that describe, respectively: the proportion of the variation in the 

skill requirements that can be attributed to different characteristics of the job, as reported in the 

advertisement; the different probability with which a given skill is required in jobs opened in digital intensive 

vs. less digital intensive sectors; and the wage premium associated to a given skill requirement, holding 

other features of the advertised jobs constant.  

Variance in skill requirements 

97. One possibility to infer (online residual) demand for certain skill categories is to compute the share 

of job postings listing at least one keyword belonging to those categories, which gives the empirical 

probability of job postings requiring a given skill. This is the approach taken by an important part of the 

literature (see for instance Deming and Kahn, 2018[1]). A first exercise explores how the observed variation 
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in skill requirements across job postings is related to variation in observed (occupation, firm, location, 

education and experience requirements) and unobserved dimensions of the advertised job.  

98. Figure 7 shows the results of a regression, at the job posting level, of a dummy variable indicating 

whether the advertisement lists at least one skill in category c, onto education and experience requirements 

and 6-digits occupation, region, and firm fixed effects. The exercise is repeated for the sixteen categories 

of the higher-level hierarchy. As in Deming and Kahn (2018[1]), to limit noise in the estimation, the sample 

is restricted to firms with at least two ads in 2018, to professional occupations (SOC codes 11 to 29)24, and 

to job postings listing less than 20 skill keywords. The height of each bar represents the total variance for 

each category. This overall variance in the requirement of a particular skill category is decomposed into 

the variance in the fitted values for the occupation fixed effects (bottom bar in dark blue), for job location 

and education and experience requirements (light grey bar), for the firm fixed effects (light blue bar), and 

into the remaining unexplained variance (dark grey bar).25  

Figure 7. Sources of variance in skill requirements across ads 

Variance by underlying factor 

 

Note: We regress an indicator taking value 1 if the job advertisement contains at least one skill in the specified category, and 0 otherwise, on a 

set of controls including: an indicator for the 6-digit U.S. SOC 2010 occupation (“occupation”), an indicator for the employer (“firm”), and “other 

controls” (education and location dummies, and minimum required experience). 100% corresponds to the variance of the residuals and of the 

fitted values based on specified controls. The sample is restricted to firms with at least two ads in 2018, to professional occupations (U.S. SOC 

codes 11 to 29), and to job postings listing less than 20 skills. 

Source: OECD calculations based on Burning Glass data for CAN (2018). 

99. Occupation fixed effects account for a small fraction of the total variance in skill requirements (less 

than 10%). This percentage is slightly higher for Business Process, Production, Medicine, Science, and 

Training and Education categories. Controls for job location and education and experience requirements 

(“Other controls”) also account for less than 10% of the total variation, with the exception of Medicine, 

Management, Digital, and Training and Education categories. On the contrary, there is substantial variation 

across firms in their tendency to specify the different skill requirements: between 15% and 40% of total 

                                                
24 Results are qualitatively similar when including all occupations (U.S. SOC codes 11 to 53). 

25 Sector fixed effects are not included because they would be absorbed by firm fixed effects in most cases. 
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variance is explained by firm fixed effects, with Languages and Physical skills being the two categories for 

which the identity of firm is the most important. These can be explained by systematic differences in firms’ 

recruiting strategies and in skill utilisation. However, most of the variance in each skill requirement 

(between 50% and 70%, depending on the skill category) remains unexplained with this set of control 

variables and firm fixed effects.26 These results are consistent with findings in Deming and Kahn (2018[1]) 

for the United States for the period 2010-2015, although the unexplained variance is lower in their case 

(about 50% on average). Among skill categories with the highest total variance, cognitive skills are those 

for which the largest part remains unexplained. Other categories for which the unexplained component is 

substantial are social skills, attitudes, and several knowledge categories (science, law, humanities and 

industry-specific knowledge).  

Sectoral differences in skill requirements  

100. This second exercise exploits the variation in skill requirements related to the employer’s sectoral 

affiliation. In particular, it distinguishes between sectors that are more vs less intensive in digital 

technologies, as classified by Calvino et al. (2018[54]). Sectors can then be classified as digital intensive if 

they lie above the median of digital intensity across sectors, or less digital intensive if otherwise. Indeed, 

digital intensive sectors see a more pervasive diffusion of digital technologies, as captured by seven 

different intensity dimensions (ICT and software investment, purchases of ICT intermediate goods and 

services, use of robots, employment of ICT specialists; revenues of online sales), and this is likely to have 

a significant impact on skill need. The analysis above shows that firms’ characteristics explain an important 

part of the observed differences in skill requirements between job postings. One particular characteristic 

that could drive the differences is the sector in which a firm operates, and more particularly its digital 

intensity. The link between digital-intensity and skill requirements has been explored empirically by 

Grundke et al.  (2018[3]), but they do not look at skill requirements in online postings (they use data on skill 

use on the job from the OECD Survey of Adult Skills) and rely on a more limited number of skills.   

101. Figure 8 shows how skill requirements differ in online postings for jobs in digital intensive vs less 

digital intensive sectors, after factoring-in a number of other features of the job postings such as location, 

occupation and employer. Even for the same employer, jobs in digital intensive sectors require more 

frequently skills related to communication and digital technologies themselves, but also managerial skills 

(“Business processes”, “Resource management”) and higher cognitive abilities (“Cognitive skills”, 

“Scientific knowledge”). Conversely, physical skills and skills related to production – among others – are 

more frequently demanded in postings for jobs in less digital intensive sectors. By design of the estimation, 

these results are not necessarily driven by the fact that jobs in digital intensive sectors are also more 

intensive in occupations related to ICT.  

                                                
26 The residuals capture factors affecting skill requirements in job advertisement, but which are not linked to employer, 

sector, occupation, geographical location, education and experience requirements. One such example is differences 

across job titles, i.e. more detailed occupational specifications.  
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Figure 8 Difference in the probability of requiring a certain skill, digital intensive vs less digital 
intensive sectors 

 

Note: The graph plots the marginal effect of an OLS regression, where the probability that a job advertisement requires at least one skill in a 

given skill category is regressed on an indicator variable with value 1 if the job is advertised in a digital intensive sectors according to Calvino et 

al. (2018[54]) and zero otherwise, and dummies for State, 2-digit U.S. SOC 2010 occupation and employer name. Shaded bars identify differences 

(coefficients) which are not statistically significant at the 5% confidence level based on robust standard errors.  

Source: OECD estimations based on Burning Glass data for CAN (2018). 

Heterogeneity in wage returns to skill requirements 

102. A last application of the classified database assesses whether certain skill categories are 

associated with a higher wage premium.27 Figure 9 reports the estimated correlation between the hourly 

wage posted in a job advertisement, and the probability that the advertisement requires at least one skill 

in a given skill category. All skill categories are pooled, as opposed to estimating the wage returns to each 

category separately, to avoid that the coefficient on any single category captures the cross-correlations 

among skills. The estimation further controls for required experience and educational attainment, and for 

dummies for the State, sector and occupation reported in the job advertisement.   

103. Once one considers all skills at the same time, a positive premium is associated with industry-

specific skills, but also cognitive, science, social and especially management and legal skills, irrespective 

of sector, occupation or geographical location of the advertised job. Conversely, postings requiring physical 

skills, skills most related to production or business processes, language skills and attitudes offer on 

average lower starting wages. The relationship to hourly wages is not statistically significant for the 

remaining skill categories.  

104. These results are similar to findings by Deming and Kahn (2018[1]) who, using Burning Glass data 

for the United States, show that social and cognitive skill requirements in job ads are positively correlated 

with occupational wage differences across local labour markets, even after controlling for education and 

experience requirements, other skill requirements, location fixed effects, and industry and occupation (6-

digit) fixed effects. They also find that the premium associated to social skills is much larger than the one 

                                                
27 These are wages posted in the job advertisement and, as such, typically exclude benefits and bonuses and are 

likely subject to renegotiation during the hiring process. In addition, only a subset of ads in the Burning Glass dataset 

include wage information and they are likely to be a selected sample. For Canada in 2018, this proportion is about 

70%.    
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for cognitive skills. Moreover, the findings on cognitive skills in the present paper are coherent with wage 

returns estimated on administrative data: using the OECD Survey of Adult Skills (PIAAC): Hanushek et al. 

(2015[4]) estimate labour market returns to cognitive skills of 19 percent in Canada,  as opposed to a 15 

percent return in the present paper. The positive premium found for science skills is also consistent with 

previous research using Burning Glass data for the United Kingdom which shows that STEM jobs (i.e. 

those with STEM skill requirements) are associated with higher wages than non-STEM jobs (Grinis, 

2019[5]). Results on digital skills warrant more consideration. Indeed, digital skills fall in the group of STEM 

skills, but are found to have no significant wage returns in our exercise (Figure 9). This may reflect a 

number of factors. First, the same digital competence may have a substantial wage premium in some 

occupations, sectors or geographies, but not in others, a fact that the coefficient on “Digital” in Figure 9 

cannot capture, as the variation is controlled for by other terms in the estimation. Second, digital skills may 

not be especially rewarded in isolation, but only when combined with other, complementary skills, 

something which is accounted for by other factors in the present estimation. Lastly, skills classified as 

“Digital” are heterogeneous in nature in the Burning Glass dataset, ranging from basic to very sophisticated 

capabilities, which can therefore have substantially different wage premia. This hypothesis was tested in 

Figure F.1 in Annex F, which reproduces the exact same specification as Figure 9, but substituting the 

aggregate category of “Digital” skills with its subcomponents, as per Table B.1. Indeed skill requirements 

in the different digital subcategories are associated to wage premia of different magnitude and sign. In 

particular, everything else held constant, higher posted wages are associated to computer programming 

skills and skill related to ICT safety or the construction of ICT networks only. Wages in postings requiring 

the other "Digital" skills are lower, likely because some such skills are less sophisticated in nature.  

Figure 9 Hourly wage elasticity by skill requirement 

Percentage change in hourly wages if the job posting requires at least one skill in the category, everything else held 

constant.  

 

Note: The graph plots the coefficients of a single estimation on Canadian 2018 job postings data, where the logarithm of posted hourly wages 

is regressed on required experience, dummies for educational attainment, dummies for all skill requirements (one for each of the 16 “Broad” 

categories presented above), State, 2-digit ISIC rev.4 industry and 2-digit U.S. SOC 2010 occupational dummies.  Dummies for skill requirements 

take value 1 if the job posting requires at least one skill falling into the category on the x-axis.  

Source: OECD estimations based on Burning Glass data for CAN (2018). 
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105. The present study introduces a semi-supervised machine learning approach to the classification 

of the approximately 17 000 skill keywords appearing in the Burning Glass dataset at the moment of writing. 

The approach relies on three main inputs: (i) a taxonomy of 61 skill categories to which the skill keywords 

should be related; (ii) a training set, i.e. a collection of examples of skills and their definition with their 

correct label or category, as manually classified by the authors according to the skills’ meaning; and (iii) 

the definitions of the skill keywords, as derived from ESCO and Wikipedia. By relying on the meaning of 

the skill keywords, the approach accounts for duplicates and synonyms in the Burning Glass datasets, and 

produces a classification that is stable over time.  

106. The final taxonomy, or list of 61 mutually exclusive skill categories, largely builds on O*NET with 

extra categories for digital skills. The O*NET database is developed and validated by labour market and 

education experts that provides detailed information on skill requirements in occupations and that 

organises this information under a clear hierarchical structure.   

107. The resulting taxonomy is then used to construct the training dataset, i.e. a subset of Burning 

Glass skills that the authors manually classify in the relevant ONET+ skill category according to their 

meaning. In this study, the set contains approximately 500 skill keywords chosen to ensure its homogeneity 

and universality.  

108. Skills are classified into one of the ONET+ categories using BERT, a Natural Language Processing 

algorithm particularly suited for sentence classification. BERT associates a vector to each skill keyword 

based on the keyword’s definition, thus allowing for the detection of semantic similarities across skill 

keywords. The algorithm is then trained to classify the skills keywords by iteratively comparing the results 

of its own classification with the manual classification contained in the training set.   

109. The resulting classification has an estimated accuracy (the percentage of correct predictions of 

the model evaluated against a manually constructed test set) of 74%, which rises to 85% when restricting 

the output to skills that are less ambiguously classified by the algorithm and with minor loss of information. 

These figures are satisfactory, given the intrinsic difficulty to classify vague or ill-defined skill keywords, 

even with a manual procedure. For comparison, a manual classification of a random sub-set of skills 

achieved a 75% accuracy rate, while a random allocation of all keywords across the skill categories would 

obtain a 2% accuracy rate.  

110. The last section of the study validates the results by comparing the outcome of the classification 

of Burning Glass skills with data reported in O*NET. A second exercise uses the skill classification derived 

in the paper to describe patterns of skill requirements in online postings, and compares them to the findings 

emanating from the existing literature. The results are largely consistent with the results found in the 

literature and with the O*NET data, providing an initial confirmation that the skills have been reclassified 

in a meaningful way.  

7 Conclusions 
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Annex A. Availability of skill information by 

occupation 

Table A.1. Percentage of observations with non-missing skill requirements 

3-dig US SOC 
Occupation 

% 
 

3-dig US SOC 
Occupation 

% 
 

3-dig US SOC 
Occupation 

% 

11-1 96.7 
 

31-2 99.2 
 

43-6 97.6 

11-2 99.2 
 

31-9 97.6 
 

43-9 98.5 

11-3 97.9 
 

33-1 98.4 
 

45-1 62.1 

11-9 97.8 
 

33-2 91.0 
 

45-2 79.3 

13-1 97.5 
 

33-3 95.3 
 

45-4 90.0 

13-2 98.2 
 

33-9 95.4 
 

47-1 89.8 

15-1 98.8 
 

35-1 97.9 
 

47-2 89.8 

15-2 98.6 
 

35-2 92.8 
 

47-3 94.0 

17-1 87.6 
 

35-3 93.2 
 

47-4 94.0 

17-2 97.3 
 

35-9 93.1 
 

47-5 92.9 

17-3 96.9 
 

37-1 98.8 
 

49-1 97.2 

19-1 98.4 
 

37-2 94.7 
 

49-2 97.0 

19-2 98.7 
 

37-3 89.7 
 

49-3 95.7 

19-3 97.9 
 

39-1 93.6 
 

49-9 95.4 

19-4 98.2 
 

39-2 96.2 
 

51-1 96.5 

21-1 96.5 
 

39-3 92.6 
 

51-2 93.4 

21-2 96.7 
 

39-4 68.3 
 

51-3 91.2 

23-1 91.4 
 

39-5 89.4 
 

51-4 98.0 

23-2 94.1 
 

39-6 94.8 
 

51-5 93.0 

25-1 98.4 
 

39-7 91.3 
 

51-6 93.3 

25-2 97.7 
 

39-9 92.4 
 

51-7 89.3 

25-3 96.4 
 

41-1 98.9 
 

51-8 91.7 

25-4 98.8 
 

41-2 98.0 
 

51-9 93.5 

25-9 96.7 
 

41-3 97.8 
 

53-1 96.9 

27-1 98.3 
 

41-4 99.5 
 

53-2 94.8 

27-2 92.9 
 

41-5 92.0 
 

53-3 90.5 

27-3 98.5 
 

41-9 97.4 
 

53-4 93.9 

27-4 98.1 
 

43-1 97.6 
 

53-5 87.2 

29-1 97.4 
 

43-2 94.7 
 

53-6 89.3 

29-2 98.2 
 

43-3 98.4 
 

53-7 90.1 

29-9 94.5 
 

43-4 98.5 
   

31-1 94.6 
 

43-5 95.8 
   

Source: OECD calculations based on Burning Glass data. 
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Annex B. The O*NET+ taxonomy 

Table B.1. Construction of the O*NET+ taxonomy 

Broad category Category label Source 

Attitudes 

  

  

  

Adaptability/resilience ESCO 

Motivation/commitment ESCO 

Self-management/rigour ESCO 

Work ethics ESCO 

Arts and Humanities  

  

  

Fine Arts O*NET 

History and Archaeology O*NET 

Philosophy and Theology O*NET 

Business Processes 

  

  

Clerical O*NET 

Sales and Marketing O*NET 

Customer and Personal Service O*NET merged 

Production and Technology  

  

  

  

  

  

  

  

  

  

Telecommunications O*NET 

Building and Construction O*NET 

Engineering, Mechanics and Technology O*NET 

Design O*NET 

Food Production O*NET 

Production and Processing O*NET 

Transportation O*NET 

Equipment Selection O*NET 

Quality Control Analysis O*NET 

Installation and Maintenance O*NET merged 

Medicine  Medicine and Dentistry O*NET 

Psychology, Therapy, Counselling O*NET merged 

Law and Public Safety  

  

Law and Government O*NET 

Public Safety and Security O*NET 

Science 

  

  

  

  

Biology O*NET 

Chemistry O*NET 

Geography O*NET 

Physics O*NET 

Sociology and Anthropology O*NET 

Industry Specific Knowledge Industry Specific Knowledge New category 

Languages 

  

Local language O*NET 

Foreign language O*NET 

Physical Skills 

  

  

  

Psychomotor Abilities O*NET 

Auditory and Speech Abilities O*NET 

Visual Abilities O*NET 

Physical Abilities O*NET merged 

Cognitive Skills  

  

  

  

Originality O*NET 

Quantitative Abilities O*NET 

Reasoning and Problem-solving O*NET merged 

Learning O*NET merged 
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Communication  

  

  

Active Listening O*NET 

Reading Comprehension O*NET 

Speaking O*NET 

Writing O*NET 

Communications and Media O*NET 

Digital 

  

  

  

  

  

Office Tools and Collaboration Software New category, based on ESCO 

Digital Content Creation ESCO 

Digital Data Processing ESCO 

ICT Safety, Networks and Servers New category, based on ESCO 

Computer Programming O*NET  

Web Development and Cloud Technologies New category 

Resource Management 

  

  

  

  

Time Management O*NET 

Management of Material Resources O*NET 

Management of Financial Resources O*NET merged 

Management of Personnel Resources O*NET merged 

Administration and Management O*NET 

Social Skills 

  

  

  

Coordination O*NET 

Persuasion and Negotiation O*NET 

Social Perceptiveness O*NET 

Judgment and Decision Making O*NET merged 

Training and Education Training and Education O*NET 

Source: OECD elaborations on O*NET and ESCO hierarchies. 

Note: The mention “O*NET merged” in the last column indicates when the category is the result of merging two or more O*NET original 

categories. 
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Annex C. More details on the BERT model  

BERT Base, BERT Large, RoBERTa and other language models 

111. A number of other versions of BERT and other language models are available, and this Annex 

justifies the choice of using BERT Base rather than other versions or other models. 

112. The original developers of BERT released two versions: BERT Base and BERT Large. The latter 

is a larger and heavier version of the first. It achieves slightly better results on the standard benchmarks 

than the smaller version. However, its size makes it significantly harder to optimise: it is longer to train and 

needs more memory (which usually means making sacrifices on other parameters). This also translates 

into lower transferability and reproducibility.  

RoBERTa was proposed by Facebook AI in 2019 (Liu et al., 2019[35]). It relies on the exact same 

architecture as BERT but uses different hyper-parameters and training objective. The researchers affirmed 

that BERT was undertrained, i.e. did not reach the optimal performance its architecture allowed. On the 

classification of Burning Glass skills, RoBERTa did train faster (shorter time to reach a given threshold of 

accuracy) but achieved similar or slightly poorer final results. 

113. A number of subsequent language models came after BERT since 2018: XLNet, DistilBERT, 

ALBERT, GPT2, and many more, each of them claiming either better performances or better training 

efficiency. While BERT is not the best performing model on the standard NLP benchmarks anymore, it 

remains the best known and documented in the field, and it makes for an uncomplicated and parsimonious 

(in computing power) approach. 

Tokenisation 

114. BERT does not actually build as many embeddings as words in the input sentence. If it were the 

case, BERT would need to store an initial embedding for each possible word it might encounter (including 

conjugations, plurals or spelling mistakes). However, this would mean storing several millions of vectors 

for several millions of words, which would be impractical and slow to use. Furthermore, for a particularly 

rare word, the quality of the embedding could be poor.  

115. Instead, BERT resorts to tokenisation, namely breaking a word into sub-pieces called tokens, a 

traditional approach in NLP. BERT uses WordPiece tokenising. The methodology relies on splitting a word 

into its prefixes, root and suffixes. For example, “rare” is conserved as [“rare”] but “rarer” is split as [“rare”, 

“##r”] where “##” is used to distinguish between the suffix and the sole letter “r”. When processing a 

sentence including “rarer”, the Transformer architecture is in charge of spotting both the root and the suffix 

and update the corresponding embeddings accordingly in the subsequent layers. With this tokenising 

method, BERT reduces the number of unique tokens to be stored to around 30 000. For more details, see 

Schuster and Nakajima (2012[55]). 

116. In practice, for each skill, there are as many embeddings as tokens in the definition, a number 

always greater than the number of words themselves. The maximum number of tokens that BERT can 

process at once is 512, but because of computing power issues, the taxonomy algorithm uses a maximum 

number of tokens equal to 256. 
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Annex D. Additional evaluation metrics 

117. Accuracy is usually the primary metric of interest for a final user. However, in the presence of 

unbalanced categories, it can be misleading: predicting systematically the predominant category can yield 

high accuracy, but low predictive value. To counterbalance that, several other metrics exist: precision, 

recall, F1 score, Matthew’s Correlation Coefficient (MCC), and many others. While those are quite standard 

and well defined for binary classification, their extension to multiclass classification is not natural. The 

precision, recall and F1 score are generalised by transforming the problem into a binary classification 

(correct/incorrect prediction) for each class and averaging the results over all classes. However, the 

averaging can or cannot take into account class imbalance.28 

 The macro averaging calculates metrics for each class, and finds their unweighted mean. This 

does not consider label imbalance. 

 The micro averaging calculates metrics globally by counting the total true positives, false negatives 

and false positives. 

 The weighted averaging calculates metrics for each label, and finds their average weighted by 

support (the number of true instances for each label). This alters ‘macro’ to account for label 

imbalance (it can result in an F1 score that is not between precision and recall). 

118. The “micro” definition of precision, recall and F1 score is equivalent to accuracy. Therefore, 

“weighted” scores are reported. The MCC is more easily generalised (Gorodkin, 2004[56]). A MCC of 1 

indicates perfect correlation, whereas a 0 means “no better than random”. 

119. The table below summarises those metrics: 

Table D.1. Additional evaluation metrics 

  Accuracy Precision Recall F1 score MCC 

BERT (O*NET+ with 61 categories) 74 % 0.768 0.740 0.737 0.725 

Random 2 % 0.058 0.017 0.022 0 

Zero Rule 14 % 0.020 0.140 0.034 0 

BERT (O*NET+ with 16 categories) 82 % 0.843 0.825 0.828 0.796 

Source: OECD calculations based on Burning Glass data. 

                                                
28 From scikit-learn documentation 
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Annex E. q distribution 

Figure E.1. Distribution of the q value over all classified Burning Glass skills 

 

Source: OECD calculations based on Burning Glass data. 
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Annex F. Further Applications 

Figure F.1. Hourly wage elasticity by skill requirement: Digital skills subcategories 

Percentage change in hourly wages if the posting requires at least one skill in the category, everything else held constant. 

 

Note: The graph plots the same specification as Fig. 12 (including all the same regressors) but the dummy for “Digital” skills, which was 

substituted with the six dummies for the subcategories of “Digital”, as reported in the present figure. Canadian job postings data for 2018.  

Source: OECD estimations based on Burning Glass data for CAN (2018). 
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