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SPOKE CAVITIES: AN ASSET FOR THE HIGH
RELIABILITY OF A SUPERCONDUCTING ACCELERATOR

STUDIES AND TESTS RESULTS OF A b = 0.35, TWO-GAP
PROTOTYPE AND ITS POWER COUPLER AT IPN ORSAY

C. Miélot
Institut de Physique Nucléaire

Orsay, France

Abstract

Taking into account the PDS-XADS requirements concerning accelerating field, quality factor and
reliability, two spoke-type cavities have been designed at IPN Orsay. One of them has been successfully
tested and the second one is currently being fabricated. This paper reports on the excellent performance
of the first cavity, substantially exceeding the requirements, which make spoke cavities an attractive
solution for a reliable PDS-XADS proton driver.
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Introduction

Studies on spoke cavities are in progress at IPN Orsay. Taking into account the requirements
defined by deliverable D57 of PDS-XADS [1,2], a b = 0.35 spoke cavity has been designed. Fabricated
by CERCA, the cavity was tested at IPN. A second spoke cavity with b = 0.15 has been designed and
is presently being fabricated. As shown in P. Pierini’s contribution to this conference, superconducting
spoke cavities seem to be an attractive solution for the low b section of the XADS accelerator. In this
paper, subsequent to a short description of the design and fabrication process, we will discuss the results
of the tests performed at IPN and demonstrate their good performances with respect to the established
requirements. One of the main imperatives for the whole accelerator is reliability, such that the
feasibility of producing this system on industrial scale can be shown. The system must be fault tolerant,
and the number of beam trips should be less than five per year. The result of the tests will show that
using spoke cavities for the low b section is a good strategy for achieving the goal of reliability.

Design and fabrication

These cavities are referred to as “spoke” cavities within the accelerators community because of
the “spoke-like” part that goes through the outer wall of the cavity (see Figure 1). This spoke defines
two gaps in which the electric field can accelerate the proton beam that goes through the central hole
of the spoke. The accelerating field of these resonating cavities is driven by an external RF transmitter
linked to the cavity by a coupling port. The cavities are made of bulk niobium (superconducting metal
at working temperature 4 K). The b = 0.35 cavity, named “AMANDA”, had been designed with the
help of the electromagnetic code MAFIA. The optimisation of Epk/Eacc (the ratio of peak electric field
on the wall of the cavity and accelerating field) and of Bpk/Eacc (magnetic peak field out of accelerating
field) lead to a diameter D of one-third of the accelerating length: D = 1/3 Lacc. The shape of the central
spoke has been designed to reduce Bpk/Eacc (optimisation of the spoke extremities diameter) and to
increase the transit time factor Tt, given by DE = e.V.Tt, where DE is the energy gain, e the proton
charge and V the maximum voltage in the gap (see Figure 1). To ensure rigidity and good mechanical
performances, stiffeners have been added on the flanges of the cavity as shown in Figure 2.

Fabrication was ensured by CERCA, using specially designed tools. The centre shape of the
spoke was made possible by squeezing the cylinder while the rest of the spoke was strictly maintained.
Table 1 shows the main characteristics (in mm) of the b = 0.35 spoke cavities.

Figure 1. Shape of a spoke cavity (CATIA software)
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Figure 2. Stiffeners on the cavity flanges (ACORD-CP software)

Table 1. Main characteristics of AMANDA (in mm)

Cavity diameter 408
Total length 354

Spoke base diameter 118
Spoke centre thickness 67

Spoke centre width 147
Gap centre to gap centre 150

Iris to iris 200
Beam tube length 150

Beam tube aperture 60

Tests results

Lorentz force coefficient

Measuring the frequency shift with the variation of Eacc, we could deduce the value of the Lorentz
force coefficient, which is K = -5.6 Hz/(MV/m)2, shown in Figure 3. The measures have been taken
with a stiffening system mounted on the cavity. This value is in good agreement with the predicted
value of -8 Hz/(MV/m)2, given the numerous approximations in the code, meaning that the mechanical
behaviour of the cavity is better than the more challenging behaviour of low-b elliptical cavities.

Figure 3. Frequency (MHz) vs. Eacc
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Surface resistance

The first measure of surface resistance [Figure 4, measuring G/Q0 (diamonds) where G is the
given geometrical factor of the cavity, G = Rs.Q0, with the surface resistance Rs and Q0 the quality
factor] gave a value of 10 nW for residual resistance. After staying 67 hours at 100 K another measure
gave 70 nW for residual resistance (squares, Figure 4). The value of residual resistance was found by
comparison with empirical formula for surface resistance:
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where T is the temperature, f the frequency and Tc is the critical temperature of niobium (Tc = 9.2 K).
This value is appropriated under the condition that the cavity is protected from the 100 K effect; this is
an important point that will have to be taken into account for minimising the losses on the cavity walls.
Indeed, when left at a temperature around 100 K, the hydrogen that is inside the niobium precipitates
into components which in term increase Rs.

Figure 4. Surface resistance of the cavity walls (W ) vs. 1/Pcav (1/W)
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The quality factor Q0

Measures of Q0 vs. Eacc were performed under various conditions: with and without high pressure
rinsing (HPR), with ultra-pure water, with different coupling positions, and with and without helium
processing. The main results are given in Figures 5 and 6.

After 67 hours at 100 K the maximum Eacc is down to 11.9 MV/m with Q0 = 3.108 (see Figure 5).
These tests were performed using the beam tube as coupling port. Then it can be noted that HPR is
absolutely necessary; as show in Figure 6, this usual processing allows reaching high Eacc. The limitation
encountered during the first test (without HPR, diamonds in Figure 6) was due to multi-pacting.
Multi-pacting is a field-limiting resonant phenomenon due to secondary emitted electrons. Even after
HPR – but without He processing – the same multi-pacting barrier was encountered between 1.5 MV/m
and 2 MV/m. He processing is another usual process, used in cavity preparation and tests. It consists

Rs (W )
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Figure 5. Q0 vs. Eacc (MV/m)
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Figure 6. Q0 vs. Eacc without HPR (diamonds), with HPR and without He
processing (squares) and with both HPR and He processing (triangles)

The red star indicates the requirements for PDS-XADS: Eacc = 7 MV/m with Q0 = 5.108.
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XADS requirement

of introducing a low pressure of He (10–5 mbars) inside the cavity, and using RF power to produce arcing
that destroys electron emitting sites. After two He processings we could achieve Eacc = 12.55 MV/m
(Q0 = 3.108); this maximum is due to source limitation (no quench). Within that test we could also
achieve Q0 = 2.109 at low field. Regarding the requirements for PDS-XADS, it can be seen that we
have achieved a comfortable performance margin that is a very positive point for reliability. Table 2
sums up the results of the tests.

Eacc max = 12.5 MV/m
power source limit
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Table 2. Main characteristics of the tests results

Test no. Rinsing Coupling Low field Q0 Eacc max
1

January 2003
No HPR Coupling port 5.00E+08 2.3 MV/m

2
March 2003

HPR Beam tube 2.10E+09 12.2 MV/m

3
July 2003

HPR Coupling port 4.00E+08 12.55 MV/m

Losses on antenna, coupling port position

During the last test we used a variable coupler to feed the RF power through the coupling port.
Figure 7 shows the increase of the losses on the antenna when it was moved from a 23-mm position to
11 mm within the port. This meant that the coupling port was set in an area where the magnetic field
was rather high, so it was decided to proceed with numerical calculations to choose an optimised location
for the coupling port. The calculations were also performed to determine an accurate port diameter in
order to avoid multi-pacting problems. The results of the simulations are given in the next section.

Figure 7. Q0 vs. position of the antenna inside the coupling port (mm)
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Numerical simulations

Position and diameter of the coupling port

All the numerical simulations are undertaken using the ANSOFT HFSS electromagnetic code.
Regarding multi-pacting occurrences and compromising with mechanical limitations, we chose a port
diameter F = 53 mm. Table 3 shows the RF threshold power multi-pacting barrier (in kW) for different
port diameters and for orders 1 to 10. The lower the order, the more often this multi-pacting barrier can
occur. Since 20 kW must be fed to the cavity, the diameter chosen must allow to sustain such a power
without a multi-pacting barrier. It is reasonable to avoid multi-pacting until order 3 regarding the low
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probability of a higher order barrier to occur. In Table 3, the threshold powers that can be overcome
with no multi-pacting regarding the 20 kW power to be carried through the line are shaded in grey.
This means, for example, that with the choice of F port = 50 mm, an order 2 multi-pacting barrier
occurs at P = 16.38 kW. As the power in the line is 20 kW, this multi-pacting order is reached. As this
order is low enough to be dangerous, we want to avoid it. With a F port = 56 mm, this order requires
25.77 kW to start, thus limiting the power to 20 kW will eliminate such a possiblity.

Table 3. Multi-pacting barriers for order 1 to 10 for different port
diameters. The diameter of the antenna is given for line impedance of 50 W . 

F port (mm) 30 50 56 60 70 100Multi-pacting
order F ant (mm) 13.03 21.72 24.32 26.06 30.4 43.43

01 3.07 23.7 37.3 49.15 91.06 379.26
02 2.12 16.38 25.77 33.96 62.92 262.05
03 1.2 9.41 14.81 19.52 36.16 150.61
04 0.72 5.56 8.76 11.54 21.38 89.04
05 0.45 3.46 5.44 7.17 13.28 55.33
06 1.29 2.28 3.59 4.73 8.76 36.47
07 0.21 1.61 2.53 3.34 6.19 25.79
08 0.16 1.24 1.95 2.57 4.76 19.82
09 0.13 1.04 1.63 2.15 3.99 16.63
10 0.12 0.95 1.49 1.96 3.64 15.16

Once the diameter was determined, the numerical simulation concerning the port position was
undertaken. The position is given by the angle of the port with the spoke. The initial position is given
by q = 45° in Figure 8.

Figure 8. Start situation: port angle = 45

The normalised losses decrease a q increase from 45° to 90°. Figure 10 shows the integrated
squared magnetic field on the antenna surface that is actually in contact with the field for the AMANDA
cavity. It was therefore decided that the next cavity would be fabricated with a 90° angle, as shown in
Figure 9.
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Figure 9. Final situation: port angle = 90

Figure 10. Normalised integral of squared magnetic field
on antenna surface vs. angle of the port with the spoke
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The results of the simulations show that the requirements for the coupling factor (regarding the
intensity of the beam and the corresponding power to be provided) can be easily reached with the new
port position. The position of the antenna is given on the axis of the port. Figures 11and 12 show the
simulations results for a b = 0.35 cavity and for a b = 0.15 cavity.

Studies in progress on power coupler

In addition to the developments on the spoke cavities, the associated power coupler is also under
study. The main work, at this moment, concerns the ceramic window. Many window shapes have
already been investigated to choose the accurate one. Table 4 shows the main parameters that will
determinate which window to choose for the spoke cavity. From these results it can be inferred that the
cylindrical type of window, shown in Figure 13, is the most appropriated for spoke coupler.
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Figure 11. Qi vs. antenna position (mm)
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Figure 12. Qi vs. antenna position (mm) for b = 0.15 spoke cavity
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Table 4. Main parameters of different window shapes for spoke power coupler

Window type
Disc with

chokes
Disc

(no chokes) Cylindrical Waveguide/
coax

Disc with
chokes

S11 at 352 MHz (dB) -55.4 -58 -45.17 -60 -40.2
Bandwidth (MHz) >1 000 760 410 6 8
Esurf max (V/m) 9.88E+04 1.24E+05 1.50E+04 1.24E+04 2.30E+04

Losses inside
the window (W)

60 71.75 68.2 147 33

% Pinc 0.30% 0.36% 0.34% 0.74% 0.17%
Window volume

(cubic mm)
2.86E+04 1.65E+04 8.11E+04 1.61E+06 1.37E+05

Volumic losses
(W/mm3)

2.10E-03 4.34E-03 8.41E-04 9.14E-05 2.41E-04
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Figure 13. Cylindrical window simulation model

Darker shading (orange) – conductors, lighter shading (green) – ceramic window

Conclusion

The overall design achieved concerning AMANDA and its mechanical stability show that this
cavity is a very good component for a fault tolerant linac for PDS-XADS. Indeed, the good performances
(Eacc max = 12.5 MV/m and Q0 = 1.5 · 109 at Eacc = 7MV/m) are much higher than the established
requirements (Eacc = 7 MV/m with Q0 = 7 · 105) and allow de-rated mode operation that is an a priori
asset for reliability.
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