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Abstract

Thermochemical water-splitting process of lodine-Sulfur family (IS process) has been studied in
various research institutions. Previous studies cover the chemistry of each reaction section, heat/mass
balance analysis of the process flowsheet, screening of corrosion-resistant materials of construction,
development of advanced chemical reactor made of ceramics, and small-scale demonstration of the
closed-cycle hydrogen production. Based on these studies, a pilot test of IS process is planned at Japan
Atomic Energy Agency (JAEA), which consists of (1) hydrogen production test using test apparatus
made of industrial materials and electrically-heated helium gas as the process driver, (2) development
of analytical code system, (3) R&D on efficient unit operations and on advanced materials, (4) design
study on a next-stage test plant to be connected to the HTTR.
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Introduction

“Thermochemical method” for hydrogen production offers a technology with which nuclear
energy is transformed into hydrogen, the energy carrier. This paper briefly describes the present status
of study on lodine-Sulfur cycle, a promising thermochemical cycle, at JAEA.

Hydrogen production by direct thermal decomposition of water requires high temperature heat of
a few thousand Kelvin. However, by combining high-temperature endothermic chemical reactions and
low-temperature exothermic chemical reactions, in which the net chemical change resulting from the
sequence of component chemical reactions is the water decomposition, it is possible, in principle, to
decompose water only with the heat of lower temperature. The cycle of chemical reactions produces
the free energy required for water splitting. It is called thermochemical method and has a possibility of
large-scale carbon-free hydrogen production.

Thermochemical water splitting cycle was first studied by Funk [1], and an actual example was
proposed by researchers of CEC, JRC Ispra establishment, in early 70s [2]. Since then, a number of
thermochemical cycles have been proposed assuming high temperature gas-cooled reactor (HTGR) as
the heat source, which can supply heat with its maximum temperature of close to 1 000°C. After mid-
80s, activities in Europe and in North America slowed down in accordance with the slowing down of
their HTGR projects. Recently, however, with the emerging interest in the “hydrogen energy system”
in accordance with the progress of fuel cell technology, the thermochemical method attracts growing
interest again.

Previous studies on lodine-Sulfur cycle focusing on the activities of JAERI

Hundreds of cycles have been studied from the viewpoints of the feasibility of component
chemical reactions in terms of conversion ratio and/or products separation, theoretical thermal
efficiency of hydrogen production etc [3]. Among them, those that utilise thermal decomposition of
sulfuric acid, which are categorised as “sulfur cycles”, have been considered one of the most promising
cycles.

Thermal decomposition of sulfuric acid, reaction (1), proceeds in the following two steps.
H,SO,(aq) = H,0(g) + SO5(g) 300-500°C

SO4(g) = SO,(g) + 0.5 0,(q) 800-900°C

H,SO, = H,0 + SO, + 0.5 O, (1)

Both steps are highly endothermic and proceed smoothly without side reactions and with high
conversion ratio at the temperature range indicated. The endothermic characteristics match well with
the temperature distribution of the heat source, HTGR. The heat of HTGR is transferred to the chemical
process through the sensible heat of helium gas, the temperature of which varies, e.g. 900-400°C.
Therefore, the reaction is quite suited as the high temperature endothermic reaction for thermochemical
water splitting cycle [4].
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lodine-Sulfur cycle (or Sulfur-lodine cycle, or ISPRA Mark 16 cycle) combines following
chemical reactions with the sulfuric acid decomposition reaction.

SO, + I, + 2H,0 = 2HI + H,SO, )
2HI =H, + 1, (3)

Here, reaction (2), known as “Bunsen reaction”, is the low-temperature exothermic reaction,
where raw material, water, reacts with iodine and gaseous sulfur dioxide producing an agueous solution
of hydriodic acid and sulfuric acid. The acids are then separated and thermally decomposed to produce
hydrogen and oxygen.

The cycle has been studied in US, Europe and Japan since 1970s, and some important
breakthroughs were attained by General Atomics (GA). So far, the research has been carried out in the
following fields:

(@) study on the chemistry of each reaction section;

(b) demonstration of the closed-cycle hydrogen production;

(c) heat/mass balance analysis of the process flowsheet;

(d) screening of corrosion-resistant materials and development of advanced chemical reactors.

There are two main issues concerning the chemistry of the reaction and the separation. One is how
to separate the hydriodic acid and sulfuric acid produced by the Bunsen reaction. The other is how to
carry out the hydrogen iodide decomposition section, where the presence of azeotrope in the vapor-
liquid equilibrium of hydriodic acid makes the energy-efficient separation of HI from its aqueous
solution difficult and also unfavorable reaction equilibrium limits the attainable conversion ratio of HI
to a low level, ca. 20%.

As for the former problem, the researchers of GA found that the mixed acid solution produced by
the Bunsen reaction separates spontaneously into two liquid phases in the presence of excess amount
of iodine [4]. The heavier phase is mainly composed of HlI, I,, and H,0O, and is called “HIx” solution.
The main components of the lighter phase are H,SO, and H,O. The phenomenon (LL phase separation)
offered an easy way of separating the hydriodic acid and the sulfuric acid. As for the hydrogen iodide
processing, some ideas have been proposed by GA [4], RWTH Aachen [5] and JAERI. JAERI studied
a utilization of membrane technologies for concentrating the Hix solution to facilitate the HI separation
and also for enhancing the one-pass conversion of HI decomposition [6,7].

One of the specific and important characteristics of thermochemical water splitting cycles is that
the reactants except water are cyclically used in the process. The closed-cycle continuous hydrogen
production by lodine-Sulfur process featuring the LL phase separation has been examined at JAERI.
Although the chemistry of sulfuric acid decomposition section and that of hydrogen iodide
decomposition section are rather straightforward in terms of reaction and separation, in the Bunsen
reaction section, occurrence of side reactions forming sulfur and/or hydrogen sulfide should be
suppressed while maintaining the liquid-liquid phase separation. JAERI has devised a basic
methodology for the closed-cycle continuous hydrogen production and also for the reaction control in
the Bunsen reaction step. Feasibility of the methodology has been demonstrated in small-scale
continuous hydrogen production experiments of INL-H,/h and of 30NL-H,/h, as well [8,9].
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Preliminary flowsheeting studies carried out at GA [10,11], RWTH Aachen [5,12], Ecole
Polytechnique Montreal [13], CEA [14] and JAERI [15] suggested that the “process thermal efficiency”
in the range of 35-50% could be possible assuming intensive heat recovery. Here, the thermal efficiency
is defined as the ratio of the Higher Heating Value (HHV) of hydrogen to the net energy input for the
process. Precise thermodynamic data concerning the concentrated process solutions is desired for the
accurate evaluation of the heat/mass balance.

Since sulfuric acid and halogen are very corrosive, selection of the structural materials is an
important issue. Screening tests have been carried out using test pieces of commercially available
materials at GA [16], JAERI [17] etc. As for the gas phase environment of H,SO, decomposition step,
some refractory alloys that have been used in conventional chemical plants showed good corrosion
resistance. Also, in the gas phase environment of HI decomposition step, a Ni-Cr-Mo-Ta alloy was
found to show good corrosion resistance. As for the Bunsen reaction step, glass-lining materials, Ta etc
showed corrosion resistance. In the environment of Hix distillation, Ta showed excellent corrosion
resistance. The severest environment is the boiling condition of concentrated sulfuric acid under high
pressure (e.g. 20bar), where ceramic materials containing Si such as SiSiC, SiC, and Si3N4 were the
only materials that showed excellent corrosion resistance [18]. In summary, for gas phase service, there
exists little concern on the structural materials. As for the equipments used in the Bunsen reaction step,
lining materials should be used. Special design consideration is required for the equipments to be used
in the boiling and condensing conditions of the acids.

One of the key components to be used in the boiling sulfuric acid environments is the sulfuric acid
decomposer, in which sulfuric acid solution with concentration of more than 90 wt% is evaporated and,
simultaneously, H,SO, is decomposed into gaseous SO, and H,O under high temperature conditions of
up to 500°C. Recently, JAERI proposed a concept of the sulfuric acid decomposer, in which multi-hole-
blocks made of SiC is used as the heat exchanging units. Feasibility of the concept has been confirmed
by preliminary analysis of the mechanical strength and thermal-hydraulic performance, and also by a
test-fabrication of prototype ceramic block [19].

JAEA’s Pilot Test Plan

At present, JAEA is conducting R&D programmes to develop technologies for the
thermochemical hydrogen production using HTGR. The programme covers R&D on HTGR
technology, R&D on the system integration technology to connect HTGR and hydrogen production
plant, and R&D on lodine-Sulfur cycle.

As for lodine-Sulfur cycle, a pilot test is planned as a logical evolution of the above-mentioned
studies. In the pilot test, following studies will be carried out [20].

(1) Development of IS process test plant made of engineering materials. Capacity of the plant may
be in the range of 10-30m*-H,/h, with which smallest components used in industrial chemical
plants can be tested such as valves, pumps, etc.

(2) Hydrogen production test using the test apparatus driven by electrically-heated helium gas.
Operation of the test plant will demonstrate the technical feasibility of lodine-Sulfur cycle,
and, also, the test data will be used to verify the analytical codes to be developed.

(3) Development of computer code system for analysing the heat/mass balance, for dynamic
process simulation, for supporting the component design works, etc.
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(4) R&D on advanced low-cost materials that exhibit corrosion resistance in the severe process
environments.

(5) R&D on advanced unit operations that enable to improve the heat/mass balance.
(6) Design study on a next-stage test plant to be connected to the HTTR.

After completion of the pilot test of lodine-Sulfur cycle, it is planned to proceed to the
demonstration test of nuclear hydrogen production using HTTR.
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