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Abstract

The iodine-sulfur and the Westinghouse method are recognised as thermochemical methods for
producing hydrogen from water. Thermal decomposition of SO3 is an important process in both
methods. This study evaluated the decomposition rate of SO3 using a flow type apparatus. The
decomposition rate of SO3 was evaluated by the temperature dependence of oxygen concentration using
a chemical kinetic model. The decomposition of SO3 was assumed to be homogeneous reaction of first
order. The decomposition rate without catalyst was estimated to be 3.99x1011 exp(-33,096/T) s-1. When
hematite was used as the catalyst, the decomposition rate constant increased drastically to 1.31x1015

exp(-36,299/T) s-1. The decomposition ratio for cases with the catalyst was found to approach 1.0
within 2 seconds at 1173K by the chemical dynamics calculation. This indicated that the decomposition
of SO3 was efficient at 1173K.
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Introduction

Hydrogen is a promising fuel for the next-generation energy systems. Nuclear energy can provide
heat and electricity to produce hydrogen. Thermochemical decomposition of water using nuclear heat
has been studied for hydrogen production. Iodine-sulfur (IS) and Westinghouse (WH) method are
recognised as high efficient thermochemical methods of producing hydrogen from water [1]. Thermal
decomposition of sulfur trioxide (SO3) is an important process in both the IS and WH method. Although
thermochemical data of SO3 is available, the decomposition rate of SO3 is not established. 

This study evaluated the decomposition rate of SO3 using a flow type experimental apparatus.
Using the obtained decomposition rate, time dependence of the SO3 concentration was calculated by
the chemical kinetic model to find a suitable temperature for the decomposition of SO3. 

Experimental

The experimental apparatus consisted of an electric heater, a glass tube and gas bubblers as shown
in Figure 1. The apparatus was set in a ventilator due to high toxicity of sulfur dioxide (SO2). The glass
tube was set inside the heater. Nitrogen was used as a carrier gas. Sulfuric acid (H2SO4) decomposed
into SO3 and water in the inlet part of the glass tube. Then SO3 decomposed into SO2 and oxygen in
near the center of the glass tube, where a temperature was the highest in the glass tube. After the gases
were passing through water in the gas bubblers, the concentration of oxygen was measured. 

The flow rate of nitrogen was changed from 0.2 to 0.4 L/min. H2SO4 was fed to the glass tube at
a rate of about 0.05 cc/min. The temperature inside the glass tube was heated up to 1 323K.
Temperature distribution in the glass tube was measured by 5 thermocouples. The temperature increase
rate was changed from 5 to 20 K/min. The decomposition rate of SO3 was estimated by the temperature
dependence of oxygen concentration using a chemical kinetic model.

Glass fiber with and without a catalyst was used to examine effect of the catalyst on the
decomposition of SO3. Although a suitable catalyst for the SO3 decomposition is not known well, a
catalyst such as the salts of vanadium and silver, ferric oxide, chromium oxide, and some of rare earths
is used by industry for production of H2SO4. The catalyst used for the decomposition of SO3 was ferric
oxide or hematite due to its availability.
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Figure 1. Experimental apparatus

Decomposition Rate of SO3

Chemical Kinetic Model

H2SO4 decomposes thermally as follows;

H2SO4 → H2O + SO3 (1)

SO3 → SO2 + 0.5O2 (2)

The first reaction occurs at a temperature of around 773K. So H2SO4 was expected to decompose
at the inlet of the glass tube. The decomposition rate constant of the reaction 2, k, can express in an
Arrhenius’ formula,

k = A exp (-B/T) (3)

where A is pre-exponential factor, B is constant equals E/R, E is activation energy, R is gas
constant, and T is temperature. The decomposition ratio, X, was defined as follows,

X = [SO2] / [SO3]0

= 2 [O2] / [H2SO4] (4)
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where [A] represented molar concentration of A species and 0 showed the initial state. Here the
initial concentration of SO3 was equal to the feeding concentration of H2SO4 assuming complete
decomposition of H2SO4. The oxygen concentration corresponded to half of SO2 concentration
according to the reaction 2. When the decomposition of SO3 was assumed to be homogeneous reaction
of first order, the thermal decomposition rate was expressed as follows,

d[SO2] / dt = k [SO3]

d([SO2]/[SO3]0) / dt = k ([SO3]0 – [SO2]) / [SO3]0

dX / dt = k (1 – X) (5)

The following equation could be obtained by integrating the equation 5 [2].

ln{- ln(1 – X) / T2} = ln (A / φB) – B / T (6)

where φ is temperature increase rate. If the term of ln{- ln(1 – X) / T2} was plotted against 1/T,
the decomposition rate constant could be obtained from the slop and intercept. 

Determination of Decomposition Rate Constant

Figure 2 shows plots of ln{- ln(1 – X) / T2} as a function of 1/T for cases without the catalyst. The
slops should be the same for the cases with different temperature increase rates. The temperature
increase rates were 5, 10, and 20 K/min. After the experiment, there was yellowish residual near the
outlet of the glass tube. If it was sulfur, further decomposition of SO3 might occur. In that case, the slops
were not the same for the three cases since the decomposition mechanism was differ from the above
reactions. 

If the decomposition of SO3 assumed to follow the reaction 2, the average decomposition rate
constant without the catalyst was evaluated to be 3.99x1011 exp(-33,096/T) s-1 from the slops and
intercepts shown in Figure 2.

Figure 3 shows plots of ln{- ln(1 – X) / T2} as a function of 1/T for cases with the catalyst. The
slops were the same for cases with different temperature increase rates. The temperature increase rates
were 5, 10, and 20 K/min. The average decomposition rate constant with the catalyst was evaluated to
be 1.31x1015 exp(-36,299/T) s-1. The decomposition rate constant increased drastically when the
catalyst was used.
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Figure 2. Decomposition rate without the catalyst

Figure 3. Decomposition rate with the catalyst

Temperature Dependence of Decomposition Ratio

Although the reaction 2 was assumed to be the decomposition reaction, the actual decomposition
mechanism of SO3 was written as follows,

SO3 + M → SO2 + O + M ; k1 (7)

SO3 + O → SO2 + O2 ; k2 (8)

O + SO2 → SO3 ; k3 (9)

O + O + M → O2 + M ; k4 (10)

where k is rate constant and M is third species such as water and nitrogen gas in this case. The
concentrations of species were calculated by the chemical dynamics calculation. In the calculation, the
rate constants were assumed based on the above data and the references [3, 4]. Figure 4 shows the time
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dependence of the decomposition ratio for cases with the catalyst. The time needed to reach the
decomposition ratio of 1.0 corresponded to resident time in a decomposer of SO3. The resident time
decreased with increase of a temperature. This indicated that the thermal efficiency was improved with
increase of a temperature. The resident time was about 2 seconds at 1 173K. At this temperature, the
size of the decomposer could be reduced with the high thermal efficiency. 

The decomposition ratio was approaching 1.0 as shown in Figure 4. The decomposition ratio
calculated by a thermal equilibrium calculation was about 0.9 at 1 173K. This indicated that the back
reaction rate was slower than that expected by the equilibrium calculation. The rate constant of the
reaction 9 corresponding to the back reaction was smaller by a factor of 3 than that of the reaction 8
corresponding to the forward reaction. Therefore, the decomposition ratio became nearly 1.0.

Figure 4. Time dependence of decomposition ratio

Summary

The iodine-sulfur (IS) and the Westinghouse (WH) method are recognized as thermochemical
methods for producing hydrogen from water. Thermal decomposition of SO3 is an important process in
both the IS and WH method. This study evaluated the decomposition rate of SO3 using a flow type
apparatus. The time dependence of oxygen concentration was measured with a constant temperature
increase rate. The decomposition rate of SO3 was estimated by the temperature dependence of oxygen
concentration using a chemical kinetic model. The followings were clarified.

(1) The decomposition of SO3 was assumed to be homogeneous reaction of first order. The
decomposition rate without catalyst was estimated to be 3.99x1011 exp(-33,096/T) s-1. When hematite
was used as the catalyst, the decomposition rate constant increased drastically to 1.31x1015

exp(-36,299/T) s-1.

(2) The concentration of chemical species was evaluated by the chemical dynamics calculation.
The decomposition ratio for cases with the catalyst approached 1.0 within 2 seconds at 1 173K.

(3) The size of the decomposer of SO3 could be reduced if the decomposition temperature
increased to 1 173K. The thermal efficiency of the decomposition was evaluated to be almost 1.0 at
1 173K.
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