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Abstract 

The effect of heat treatment on fuel rods at 630�C and 700�C and the interfacial reaction between fuel 
and lead were investigated. The U-Zr metallic fuel was fabricated by mixing, pressing, sintering and 
extrusion. There were two kinds of phases – �-Zr precipitates and a �-UZr2 matrix in the U-Zr metallic 
fuel. After heat treatment of the extruded rod at 630�C and 700�C, the volume changes of the samples 
increased slightly and the density variation was negligible. Therefore, it is evident that U-Zr fuels have 
good thermal stability. The interface between U-55Zr fuel and Pb according to annealing time at 650�C 
consisted of two distinctive regions – a reaction zone in the vicinity of the surface and an initial zone 
in the inner area. It should be noted that the thickness of the reaction zone was 26 �m, 36 �m and 46 �m 
at 100 hrs, 200 hrs and 1 000 hrs, respectively. Also, the reaction zone consisted of an �-Zr layer and a 
Zr-depleted area. 
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Introduction 

The blanket fuel assembly for HYPER (hybrid powder extraction reactor) contains a bundle of 
pins arrayed in a triangular pitch, which has a hexagonal bundle structure. The reference blanket fuel 
pin consists of the fuel slug of the TRU-xZr (x = 50-60 wt.%) alloy and is immersed in lead for 
thermal bonding with the cladding. The blanket fuel cladding material is ferritic-martensitic steel HT9. 

Although there are lots of experimental data on the metallic alloys of U-Pu-Zr and U-Zr, they are 
for fuel types with a Zr fraction of less than 20 wt.%. Therefore, little data is available for the HYPER 
system fuel where the Zr fraction is higher than 30 wt.%. As a basic study on HYPER fuel, we 
fabricated U-55 wt.% Zr fuel instead of the actual TRU-Zr fuel. It appeared that no experimental data 
pertinent to the TRU-xZr (x = 50-60 wt.%) alloy existed. The U-55 wt.% Zr metallic fuel was 
fabricated by mixing, pressing, sintering and extrusion. This work was performed in order to 
investigate the microstructures and the thermal stability of the U55 wt.% Zr metallic fuel and the 
interfacial reaction between U-55 wt.% Zr fuel and Pb according to annealing time at 650�C. 

Experimental procedure 

The uranium powder was manufactured by a centrifugal atomiser and the zirconium powder 
(Sejong materials Co. Ltd, Korea) was prepared via the hydride-dehydride process. 

The U-Zr metallic fuel was performed by mixing, pressing and sintering in optimum compaction 
and sintering conditions [1]. The sintered U-60 wt.% Zr was extruded by an indirect extrusion machine 
at 760�C and with a 13:1 extrusion ratio. Specimens of 25 mm in length were cut, vacuum-sealed in 
quartz tubes and annealed in a box furnace at 630�C and 700�C for up to 1 500 hrs. Sample swelling 
as a function of temperature and time was determined from dimensional changes. The densities of the 
annealed samples were calculated from the weights and dimensions. The microstructures and phase 
identification of the extruded rod and the annealed rod were examined by SEM and EDS. The area 
fraction of each phase obtained by SEM was analysed by a BMI plus ver. 4.0 (Winatech, Korea). 

In order to clarify interfacial reaction between fuel and lead, a series of experiments were 
executed with fuel in Pb melt at 650�C for 100, 200 and 1 000 hrs. The composition of diffusion layers 
and the diffusion depth were analysed using SEM/EDS. 

Results and discussion 

Figure 1 shows uranium and zirconium particles. The mean particle sizes of the uranium and 
zirconium powders are 55 �m and 60 �m, respectively. Most of the uranium particles have a smooth 
surface and a generally near-perfect spherical shape with a few attached satellites. On the other hand, 
the zirconium particles fabricated by the hydride-dehydride process have an irregular morphology. 

Figure 2 shows the back-scattered electron (BSE) image of the sintered sample. As can be seen in 
phase diagrams, the �-Zr phases are distributed in the � phase, which is observed as a white matrix [2]. 
Also, small amounts of pores are found throughout the sample. 
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Figure 1. Photographs of the atomised (a) U powder and (b) Zr powder 

  
 

Figure 2. SEM micrograph and EDS analysis results for U-60 wt.% Zr sintered sample 

(a) �-UZr2 matrix, (b) �-Zr phase 

 

  
 
BSE images of the hot extruded rod are shown in Figures 3 and 4. In the sintered samples 

mentioned above, the �-Zr phases were also distributed (homogenously) in the white � phase matrix 
and the porosity was drastically decreased because of the densification by the extrusion process. It was 
confirmed that the U-55 wt.% Zr alloy with a high melting point could be fabricated via a sintering 
process at a relatively low temperature in lieu of a conventional casting process. 

Figure 5 shows the dependency of swelling behaviour and the density changes of temperature and 
time for the samples. The volume changes of the samples increased slightly and the density variation 
was negligible. Therefore, it is evident that U-55 wt.% Zr fuel has good thermal stability. 
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Figure 3. SEM micrographs of the extruded rod 

(a) Transverse direction, (b) longitudinal direction 

  
 

Figure 4. SEM micrograph and EDS analysis results for the extruded rod 

(a) �-UZr2 matrix, (b) �-Zr phase 

 

  
 

Figure 5. Volume and density changes of the extruded rod on temperature and time 
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Figure 6 shows BSE images of the rod annealed at 630�C and 700�C for 600 hrs and 1 500 hrs. 
These figures show that as the annealing time increased, the lathed �-Zr phases began to break into 
pieces and grow into spherical particles. As the annealing temperature increased, spheroidising of the 
�-Zr phases was accelerated, with transformation to a spherical shape. We can interpret that the 
geometrically unstable lathed �-Zr phase transformed to the spherical phase with a lower surface area 
by coalescence. In addition, we think that the �-Zr and �-UZr2 phases dissolved and formed a solid 
solution at an annealing temperature above 617�C, and that the spheroidised �-Zr and � phases 
appeared again during cooling. 

As the annealing time increased, the hardness decreased and the decreasing rate of the hardness 
was much higher at 700�C than at 630�C (Figure 7). This is attributed to the increase of the area 
fraction of the � phase and the decrease of the area fraction of the relatively hard �-Zr phase as the 
annealing temperature and time increased. 

Figure 8 shows the area fraction of the �-Zr phase according to the annealing time at 630�C and 
700�C. In the case of 630�C of annealing time, the area fraction of the �-Zr phase gradually decreased 
as the annealing time increased, whereas the area fraction of the �-Zr phase sharply decreased at the 
early stage of annealing time and then the decreasing rate declined at 700�C. This phenomenon agreed 
with the results on hardness values vis-à-vis annealing time as shown in Figure 7. When the 
U-55 wt.% Zr alloy is annealed at above 617�C, which is the unstable region of �-Zr phase, the alloy 
is diffused into the uranium matrix and finally forms � phase at a lower temperature. Hence, it can be 
interpreted that the drastic decrease of area fraction of the �-Zr phase at the early stage of annealing 
time was due to the higher concentration gradient of Zr, which is the driving force of Zr diffusion. 

Figure 6. SEM micrographs of the U-55 wt.% Zr fuel  
annealed at 630�C and 700�C for 600 hrs and 1 500 hrs 

(a)(b) 630�C, (c)(d) 700�C, (a)(c) 600 hrs, (b)(d) 1 500 hrs 

  
�

  
 



554 

Figure 7. Variation of room temperature hardness of rods after annealing at 630�C and 700�C 
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Figure 8. Variation of area fraction of �-Zr phase with annealing times at 630�C and 700�C 
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Figure 9 shows EDS line profile results on the interface between U-55Zr and Pb according to 
annealing time at 650�C. The microstructures of each sample consisted of two distinctive regions – a 
reaction zone in the vicinity of the surface and an initial zone in the inner area. It should be noted that 
the thickness of the reaction zone was 26 �m, 36 �m and 46 �m at 100 hrs, 200 hrs and 1 000 hrs, 
respectively, as the annealing time increased. The reaction zone also consisted of two regions – an 
�-Zr layer and a Zr-depleted area. The �-Zr layer may be formed by a diffusivity difference between 
U and Zr atoms (i.e. Zr atom diffuses into the Pb melt during annealing while U is relatively intact due 
to lower diffusivity). The TRU in the metallic fuel is reported to react with stainless, as a cladding 
material then forms eutectic at a low temperature. Thus, it is anticipated that the �-Zr layer should 
effectively act as a reaction barrier with the cladding material. 

In order to closely investigate the reaction layer, EDS analysis was performed as shown in 
Figure 10. The analysis shows that a negligible amount of Pb is present in the very outer layer of the 
reaction zone with Zr-rich phase (region A). And the �-Zr phase forms a thick layer of ~10 �m 
underneath the surface (region B). Region C consists of U-rich phase and Zr formed by the 
decomposition of � phase. As the annealing time increased, the thickness of the reaction layer from A 
to C increased to the direction of as-extruded area, region D. 
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Figure 9. Line profiles of interface of U-55Zr fuel with  
Pb bonding according to annealing time at 650�C 

(a) 100 hrs, (b) 200 hrs, (c) 1 000 hrs 

 

 

 
 

Figure 10. SEM/EDS results of U-55Zr with Pb bonding for 1 000 hrs at 650�C 

 

Mark Pb U Zr 
1 0.76 19.11 80.13 
2  10.37 99.63 
3  95.11 14.89 
4  31.82 68.18 

Figures in at.%. 
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Conclusions 

� The �-Zr phases were distributed in the white �-UZr2 phase matrix and the porosity was 
drastically decreased due to densification from the extrusion process. 

� The volume changes of the samples increased slightly and the density variation was negligible. 
Therefore, it is evident that U-55 wt.% Zr fuel has good thermal stability. 

� As annealing time increased, hardness decreased and the decreasing rate of hardness was 
much higher at 700�C than 630�C. This is attributed to the increase of area fraction of � phase 
and the decrease of area fraction of relatively hard �-Zr phase as annealing temperature and 
time increased. 

� The interface between U-55Zr fuel and Pb at annealing time and 650�C consisted of a reaction 
zone and an initial zone in the inner area. The reaction zone consisted of a �-Zr layer and a 
Zr-depleted area with thicknesses of 26 �m (100 hrs), 36 �m (200 hrs), 46 �m (1 000 hrs). 
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