Browse by: "2020"
Index
Index par titre
Index par année
This joint report by the International Energy Agency and the OECD Nuclear Energy Agency is the ninth in a series of studies on electricity generating costs. As countries work towards ensuring an electricity supply that is reliable, affordable and increasingly low carbon, it is crucial that policymakers, modellers and experts have at their disposal reliable information on the cost of generation. This report includes cost data on power generation from natural gas, coal, nuclear, and a broad range of renewable technologies. For the first time, information on the costs of storage technologies, the long-term operation of nuclear power plants and fuel cells is also included. The detailed plant-level cost data for 243 power plants in 24 countries, both OECD and non-OECD, is based on the contributions of participating governments and has been treated according to a common methodology in order to provide transparent and comparable results.
Low-carbon electricity systems are characterised by increasingly complex interactions of different technologies with different functions in order to ensure reliable supply at all times. The 2020 edition of Projected Costs of Generating Electricity thus puts into context the plain metric for plant-level cost, the levelised cost of electricity (LCOE). System effects and system costs are identified with the help of the broader value-adjusted LCOE, or VALCOE metric. Extensive sensitivity analyses and five essays treating broader issues that are crucial in electricity markets round out the complementary information required to make informed decisions. A key insight is the importance of the role the electricity sector plays in decarbonising the wider energy sector through electrification and sector coupling.
The key insight of the 2020 edition of Projected Costs of Generating Electricity is that the levelised costs of electricity generation of low-carbon generation technologies are falling and are increasingly below the costs of conventional fossil fuel generation. Renewable energy costs have continued to decrease in recent years and their costs are now competitive, in LCOE terms, with dispatchable fossil fuel-based electricity generation in many countries. The cost of electricity from new nuclear power plants remains stable, yet electricity from the long-term operation of nuclear power plants constitutes the least cost option for low-carbon generation. At the assumed carbon price of USD 30 per tonne of CO2 and pending a breakthrough in carbon capture and storage, coal-fired power generation is slipping out of the competitive range. The cost of gas-fired power generation has decreased due to lower gas prices and confirms the latter’s role in the transition. Readers will find a wealth of details and analysis, supported by over 100 figures and tables, that establish the continuing value of the Projected Costs of Generating Electricity as an indispensable tool for decision-makers, researchers and experts interested in identifying and comparing the costs of different generating options in today’s electricity sector.
Today, with the completion of First-of-a-Kind Gen-III nuclear reactors, the nuclear sector is at a critical juncture. These reactors have led in several parts of the world to delays and construction costs overruns that have challenged the competitiveness of nuclear power and are driving the risk perception of future projects. Against this background, a review of historical and recent lessons learnt from nuclear and non-nuclear project offers ample evidence that nuclear new build can be delivered cost and time-effectively.
This study assesses the policy and governance frameworks needed to drive positive learning and continuous industrial performance for nuclear new build. The study also explores the risk allocation and mitigation priorities needed to define adequate financing schemes for these projects. In the longer-term, it identifies cost reduction opportunities associated with the harmonisation of code and standards and licensing regimes and new innovative designs (i.e. small modular reactors and advanced reactors).
Many countries are dealing with challenges stemming from nuclear and radiological legacy sites. In particular, managing these sites in an open and transparent fashion while taking into account the views of all relevant stakeholders and building confidence in the solutions adopted is an ongoing challenge.
This report provides information on the challenges and lessons learnt in legacy management and regulation based on practical experience documented in 13 case studies and site visits conducted by the OECD Nuclear Energy Agency. A preliminary framework for a stepwise process to help reach an accepted and sustainable end-state is proposed based on this experience. The complex challenges and interactions among stakeholders in progressing in a harmonised, step-by-step manner are also examined in depth. The report concludes with recommendations for future international collaborative work to improve and test the preliminary framework, and to examine and address the complexity of the relevant interactions.
Knowledge of basic nuclear physics data is essential for the modelling and safe operation of all types of nuclear facilities. The de fact international standard format, Evaluated Nuclear Data File 6 (ENDF-6) format, was designed originally for 1960s era punch-card readers. The replacement of the system of codes built off this format has been recognised as an important initiative.
The ability to use increasingly high-fidelity nuclear physics, coupled to accurate uncertainties, is crucial for advanced simulations. This in turn requires more detailed and accurate data, then requiring improvements to the data storage standards, simultaneously enabling robust Quality Assurance and transfer of knowledge to the next generation.
In 2013, the NEA Working Party on International Nuclear Data Evaluation Co-operation (WPEC) launched a project to review the requirements for an international replacement for ENDF-6. The recommendations prompted the creation of a new Expert Group on a Generalised Nuclear Data Structure (GNDS) in 2016 that has used these requirements as the framework for a new format specification. Following rigorous international review, version 1.9 was unanimously approved as the first official published format.
Radioactive waste results from many different activities in health care, industry, research, and power production. All such waste must be managed safely, with the protection of human health and the environment as the highest priority. After decades of research, the international scientific community is now confident that placing high-level radioactive waste in deep geological repositories (DGRs) is both safe and effective.
The government of each country has the absolute right and responsibility to implement the energy and environmental policies it believes are best. In the case of the disposal of radioactive waste, it is paramount that these debates should be informed by objective facts. This report therefore aims to provide the general reader with the current state of knowledge with regards to the management of high-level radioactive waste in DGRs.
The International Reporting System for Operating Experience (IRS) is an essential system for the international exchange of information on safety related events at nuclear power plants worldwide. The fundamental objective of the IRS is to enhance the safety of nuclear power plants through the sharing of timely and detailed information on such events, and the lessons that can be learnt from them, to reduce the chance of recurrence at other plants. The first edition of this publication covered safety related events reported between 1996 and 1999. This seventh edition covers the 2015-2017 period and highlights important lessons learnt from a review of the 246 event reports received from participating states during those years. The IRS is jointly operated and managed by the OECD Nuclear Energy Agency (OECD/NEA) and the International Atomic Energy Agency (IAEA).
Radioactive waste repositories are designed to isolate waste from the living environment without human intervention over extended periods of time. Nevertheless, the intention is not to abandon the repositories, but to provide the oversight that is necessary to ensure that they are not forgotten by society. In response to this challenge, the Nuclear Energy Agency launched the international initiative “Preservation of Records, Knowledge and Memory (RK&M) Across Generations”. As a result, an in-depth understanding of this issue was developed, as well as a specific methodology to address it. The RK&M preservation toolbox, for example, offers a menu with 35 different preservation mechanisms and guidelines on how to combine and implement them.
This report may be used as a general guide to the RK&M preservation topic. It presents a historical review, addresses ethical considerations, analyses the fundamentals of RK&M preservation, outlines various mechanisms and indicates how to develop these mechanisms into a systemic RK&M preservation strategy. The report aims to inspire and assist a variety of actors so that they can discuss and develop national and repository-specific RK&M preservation strategies.
Les Données sur l’énergie nucléaire, compilation annuelle de statistiques et de rapports nationaux préparée par l’Agence de l’OCDE pour l’énergie nucléaire, présentent la situation de l’énergie nucléaire dans les pays membres de l’AEN et dans la zone de l’OCDE. Les informations communiquées par les gouvernements comprennent des statistiques sur la production d’électricité totale et nucléaire, les capacités et les besoins du cycle du combustible et, lorsqu’elles sont disponibles, des projections jusqu’en 2040. Les rapports nationaux présentent brièvement les politiques énergétiques, la situation des programmes électronucléaires et ceux du cycle du combustible. En 2018, l’énergie nucléaire a continué de fournir des quantités importantes d’électricité en base faiblement carbonée, et ce dans un contexte de forte concurrence avec les combustibles fossiles bon marché et les énergies renouvelables. Les pays décidés à inclure ou conserver le nucléaire dans leur bouquet énergétique ont poursuivi leurs projets de déploiement ou d’augmentation de leur puissance nucléaire installée. Ainsi, des projets de construction progressent en Finlande, en Hongrie, au Royaume-Uni et en Turquie.
This is Volume 13b in the OECD Nuclear Energy Agency (NEA) “Chemical Thermodynamics” series. It is the second part of a critical review of the thermodynamic properties of iron, its solid compounds and aqueous complexes, initiated as part of the NEA Thermochemical Database Project Phase IV (TDB IV), and a continuation of Part 1, which was published in 2013 as volume 13a. The database system developed at the NEA Data Bank ensures consistency not only within the recommended data sets of iron, but also among all the data sets published in the series. This volume will be of particular interest to scientists carrying out performance assessments of deep geological disposal sites for radioactive waste.